CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_2e-05
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2217
- Accuracy: 0.7348
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.4168 | 1.0 | 21 | 1.3051 | 0.7242 |
| 1.4403 | 2.0 | 42 | 1.2747 | 0.7225 |
| 1.4307 | 3.0 | 63 | 1.2563 | 0.7256 |
| 1.4205 | 4.0 | 84 | 1.2579 | 0.7326 |
| 1.4102 | 5.0 | 105 | 1.2684 | 0.7301 |
| 1.4171 | 6.0 | 126 | 1.2760 | 0.7276 |
| 1.3624 | 7.0 | 147 | 1.2583 | 0.7317 |
| 1.3795 | 8.0 | 168 | 1.2537 | 0.7326 |
| 1.3705 | 9.0 | 189 | 1.2584 | 0.7315 |
| 1.3941 | 10.0 | 210 | 1.2015 | 0.7376 |
| 1.3592 | 11.0 | 231 | 1.2455 | 0.7333 |
| 1.3463 | 12.0 | 252 | 1.2337 | 0.7329 |
| 1.3398 | 13.0 | 273 | 1.2741 | 0.7272 |
| 1.3268 | 14.0 | 294 | 1.2216 | 0.7365 |
| 1.3475 | 15.0 | 315 | 1.1982 | 0.7431 |
| 1.3475 | 16.0 | 336 | 1.2407 | 0.7319 |
| 1.3237 | 17.0 | 357 | 1.2356 | 0.7354 |
| 1.3032 | 18.0 | 378 | 1.2140 | 0.7361 |
| 1.2792 | 19.0 | 399 | 1.2441 | 0.7305 |
| 1.307 | 20.0 | 420 | 1.2496 | 0.7336 |
| 1.2778 | 21.0 | 441 | 1.2452 | 0.7348 |
| 1.3144 | 22.0 | 462 | 1.2459 | 0.7332 |
| 1.2788 | 23.0 | 483 | 1.2010 | 0.7389 |
| 1.2429 | 24.0 | 504 | 1.2262 | 0.7367 |
| 1.271 | 25.0 | 525 | 1.1833 | 0.7366 |
| 1.2758 | 26.0 | 546 | 1.2595 | 0.7298 |
| 1.2772 | 27.0 | 567 | 1.1970 | 0.7437 |
| 1.2958 | 28.0 | 588 | 1.2456 | 0.7316 |
| 1.2674 | 29.0 | 609 | 1.2686 | 0.7301 |
| 1.2628 | 30.0 | 630 | 1.2471 | 0.7334 |
| 1.25 | 31.0 | 651 | 1.2833 | 0.7276 |
| 1.2623 | 32.0 | 672 | 1.2441 | 0.7330 |
| 1.2365 | 33.0 | 693 | 1.2179 | 0.7359 |
| 1.2513 | 34.0 | 714 | 1.2510 | 0.7320 |
| 1.2423 | 35.0 | 735 | 1.2279 | 0.7320 |
| 1.2286 | 36.0 | 756 | 1.2647 | 0.7302 |
| 1.2167 | 37.0 | 777 | 1.2505 | 0.7347 |
| 1.2287 | 38.0 | 798 | 1.2558 | 0.7304 |
| 1.2511 | 39.0 | 819 | 1.2422 | 0.7336 |
| 1.2246 | 40.0 | 840 | 1.2565 | 0.7293 |
| 1.2145 | 41.0 | 861 | 1.2175 | 0.7364 |
| 1.216 | 42.0 | 882 | 1.2547 | 0.7307 |
| 1.2098 | 43.0 | 903 | 1.2632 | 0.7300 |
| 1.2505 | 44.0 | 924 | 1.2158 | 0.7348 |
| 1.2034 | 45.0 | 945 | 1.2304 | 0.7341 |
| 1.1799 | 46.0 | 966 | 1.2105 | 0.7348 |
| 1.2212 | 47.0 | 987 | 1.2299 | 0.7384 |
| 1.2175 | 48.0 | 1008 | 1.2231 | 0.7384 |
| 1.2017 | 49.0 | 1029 | 1.2540 | 0.7335 |
| 1.2096 | 50.0 | 1050 | 1.2345 | 0.7359 |
| 1.2066 | 51.0 | 1071 | 1.2665 | 0.7298 |
| 1.2044 | 52.0 | 1092 | 1.2558 | 0.7337 |
| 1.194 | 53.0 | 1113 | 1.2909 | 0.7272 |
| 1.1784 | 54.0 | 1134 | 1.2468 | 0.7338 |
| 1.1953 | 55.0 | 1155 | 1.2440 | 0.7321 |
| 1.2025 | 56.0 | 1176 | 1.2436 | 0.7300 |
| 1.197 | 57.0 | 1197 | 1.2521 | 0.7339 |
| 1.2293 | 58.0 | 1218 | 1.2644 | 0.7275 |
| 1.1934 | 59.0 | 1239 | 1.2097 | 0.7423 |
| 1.2046 | 60.0 | 1260 | 1.2561 | 0.7329 |
| 1.1764 | 61.0 | 1281 | 1.2666 | 0.7310 |
| 1.2009 | 62.0 | 1302 | 1.2778 | 0.7300 |
| 1.1888 | 63.0 | 1323 | 1.2321 | 0.7368 |
| 1.1818 | 64.0 | 1344 | 1.2877 | 0.7275 |
| 1.1988 | 65.0 | 1365 | 1.2585 | 0.7304 |
| 1.1682 | 66.0 | 1386 | 1.2776 | 0.7301 |
| 1.2029 | 67.0 | 1407 | 1.2725 | 0.7281 |
| 1.1549 | 68.0 | 1428 | 1.2764 | 0.7249 |
| 1.142 | 69.0 | 1449 | 1.2492 | 0.7312 |
| 1.1588 | 70.0 | 1470 | 1.2126 | 0.7345 |
| 1.1725 | 71.0 | 1491 | 1.3000 | 0.7223 |
| 1.1821 | 72.0 | 1512 | 1.2860 | 0.7281 |
| 1.1874 | 73.0 | 1533 | 1.2443 | 0.7321 |
| 1.1627 | 74.0 | 1554 | 1.2805 | 0.7293 |
| 1.1601 | 75.0 | 1575 | 1.1849 | 0.7454 |
| 1.1522 | 76.0 | 1596 | 1.3093 | 0.7252 |
| 1.1592 | 77.0 | 1617 | 1.2005 | 0.7401 |
| 1.1791 | 78.0 | 1638 | 1.2351 | 0.7326 |
| 1.1555 | 79.0 | 1659 | 1.2516 | 0.7333 |
| 1.1775 | 80.0 | 1680 | 1.2923 | 0.7275 |
| 1.1594 | 81.0 | 1701 | 1.2398 | 0.7318 |
| 1.1693 | 82.0 | 1722 | 1.2337 | 0.7342 |
| 1.1521 | 83.0 | 1743 | 1.2560 | 0.7330 |
| 1.1789 | 84.0 | 1764 | 1.2464 | 0.7318 |
| 1.1614 | 85.0 | 1785 | 1.2607 | 0.7256 |
| 1.1455 | 86.0 | 1806 | 1.2155 | 0.7377 |
| 1.1598 | 87.0 | 1827 | 1.2383 | 0.7348 |
| 1.1782 | 88.0 | 1848 | 1.2254 | 0.7371 |
| 1.1572 | 89.0 | 1869 | 1.2595 | 0.7315 |
| 1.1586 | 90.0 | 1890 | 1.2221 | 0.7357 |
| 1.1581 | 91.0 | 1911 | 1.2532 | 0.7323 |
| 1.1429 | 92.0 | 1932 | 1.2009 | 0.7354 |
| 1.151 | 93.0 | 1953 | 1.2633 | 0.7355 |
| 1.1729 | 94.0 | 1974 | 1.2735 | 0.7290 |
| 1.1725 | 95.0 | 1995 | 1.2702 | 0.7290 |
| 1.1608 | 96.0 | 2016 | 1.2167 | 0.7352 |
| 1.1713 | 97.0 | 2037 | 1.2516 | 0.7337 |
| 1.1418 | 98.0 | 2058 | 1.2411 | 0.7327 |
| 1.1519 | 99.0 | 2079 | 1.2157 | 0.7403 |
| 1.1559 | 100.0 | 2100 | 1.2217 | 0.7348 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 8