CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2217
  • Accuracy: 0.7348

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4168 1.0 21 1.3051 0.7242
1.4403 2.0 42 1.2747 0.7225
1.4307 3.0 63 1.2563 0.7256
1.4205 4.0 84 1.2579 0.7326
1.4102 5.0 105 1.2684 0.7301
1.4171 6.0 126 1.2760 0.7276
1.3624 7.0 147 1.2583 0.7317
1.3795 8.0 168 1.2537 0.7326
1.3705 9.0 189 1.2584 0.7315
1.3941 10.0 210 1.2015 0.7376
1.3592 11.0 231 1.2455 0.7333
1.3463 12.0 252 1.2337 0.7329
1.3398 13.0 273 1.2741 0.7272
1.3268 14.0 294 1.2216 0.7365
1.3475 15.0 315 1.1982 0.7431
1.3475 16.0 336 1.2407 0.7319
1.3237 17.0 357 1.2356 0.7354
1.3032 18.0 378 1.2140 0.7361
1.2792 19.0 399 1.2441 0.7305
1.307 20.0 420 1.2496 0.7336
1.2778 21.0 441 1.2452 0.7348
1.3144 22.0 462 1.2459 0.7332
1.2788 23.0 483 1.2010 0.7389
1.2429 24.0 504 1.2262 0.7367
1.271 25.0 525 1.1833 0.7366
1.2758 26.0 546 1.2595 0.7298
1.2772 27.0 567 1.1970 0.7437
1.2958 28.0 588 1.2456 0.7316
1.2674 29.0 609 1.2686 0.7301
1.2628 30.0 630 1.2471 0.7334
1.25 31.0 651 1.2833 0.7276
1.2623 32.0 672 1.2441 0.7330
1.2365 33.0 693 1.2179 0.7359
1.2513 34.0 714 1.2510 0.7320
1.2423 35.0 735 1.2279 0.7320
1.2286 36.0 756 1.2647 0.7302
1.2167 37.0 777 1.2505 0.7347
1.2287 38.0 798 1.2558 0.7304
1.2511 39.0 819 1.2422 0.7336
1.2246 40.0 840 1.2565 0.7293
1.2145 41.0 861 1.2175 0.7364
1.216 42.0 882 1.2547 0.7307
1.2098 43.0 903 1.2632 0.7300
1.2505 44.0 924 1.2158 0.7348
1.2034 45.0 945 1.2304 0.7341
1.1799 46.0 966 1.2105 0.7348
1.2212 47.0 987 1.2299 0.7384
1.2175 48.0 1008 1.2231 0.7384
1.2017 49.0 1029 1.2540 0.7335
1.2096 50.0 1050 1.2345 0.7359
1.2066 51.0 1071 1.2665 0.7298
1.2044 52.0 1092 1.2558 0.7337
1.194 53.0 1113 1.2909 0.7272
1.1784 54.0 1134 1.2468 0.7338
1.1953 55.0 1155 1.2440 0.7321
1.2025 56.0 1176 1.2436 0.7300
1.197 57.0 1197 1.2521 0.7339
1.2293 58.0 1218 1.2644 0.7275
1.1934 59.0 1239 1.2097 0.7423
1.2046 60.0 1260 1.2561 0.7329
1.1764 61.0 1281 1.2666 0.7310
1.2009 62.0 1302 1.2778 0.7300
1.1888 63.0 1323 1.2321 0.7368
1.1818 64.0 1344 1.2877 0.7275
1.1988 65.0 1365 1.2585 0.7304
1.1682 66.0 1386 1.2776 0.7301
1.2029 67.0 1407 1.2725 0.7281
1.1549 68.0 1428 1.2764 0.7249
1.142 69.0 1449 1.2492 0.7312
1.1588 70.0 1470 1.2126 0.7345
1.1725 71.0 1491 1.3000 0.7223
1.1821 72.0 1512 1.2860 0.7281
1.1874 73.0 1533 1.2443 0.7321
1.1627 74.0 1554 1.2805 0.7293
1.1601 75.0 1575 1.1849 0.7454
1.1522 76.0 1596 1.3093 0.7252
1.1592 77.0 1617 1.2005 0.7401
1.1791 78.0 1638 1.2351 0.7326
1.1555 79.0 1659 1.2516 0.7333
1.1775 80.0 1680 1.2923 0.7275
1.1594 81.0 1701 1.2398 0.7318
1.1693 82.0 1722 1.2337 0.7342
1.1521 83.0 1743 1.2560 0.7330
1.1789 84.0 1764 1.2464 0.7318
1.1614 85.0 1785 1.2607 0.7256
1.1455 86.0 1806 1.2155 0.7377
1.1598 87.0 1827 1.2383 0.7348
1.1782 88.0 1848 1.2254 0.7371
1.1572 89.0 1869 1.2595 0.7315
1.1586 90.0 1890 1.2221 0.7357
1.1581 91.0 1911 1.2532 0.7323
1.1429 92.0 1932 1.2009 0.7354
1.151 93.0 1953 1.2633 0.7355
1.1729 94.0 1974 1.2735 0.7290
1.1725 95.0 1995 1.2702 0.7290
1.1608 96.0 2016 1.2167 0.7352
1.1713 97.0 2037 1.2516 0.7337
1.1418 98.0 2058 1.2411 0.7327
1.1519 99.0 2079 1.2157 0.7403
1.1559 100.0 2100 1.2217 0.7348

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_2e-05