babylm_2025_submission_strict-small2 / configuration_xqwen.py
PatrickHaller's picture
Upload configuration_xqwen.py with huggingface_hub
f4780aa verified
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""xQwen model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
from xlstm.xlstm_large.model import mLSTMBackendConfig
logger = logging.get_logger(__name__)
class xQwenConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`xQwenModel`]. It is used to instantiate a
xQwen model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
xQwen-8B [Qwen/xQwen-8B](https://huggingface.co/Qwen/xQwen-8B).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the xQwen model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`xQwenModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
layer_types (`list`, *optional*):
Attention pattern for each layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import xQwenModel, xQwenConfig
>>> # Initializing a xQwen style configuration
>>> configuration = xQwenConfig()
>>> # Initializing a model from the xQwen-8B style configuration
>>> model = xQwenModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xqwen"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `xQwen`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
# SWA
use_sliding_window=False,
sliding_window=64,
max_window_layers=28,
swa_with_memory=False,
sliding_window_memory=4,
swa_modulation="static",
swa_modulation_bounded=False,
# Hybdrid
nth_layer_sa=0,
layer_types=None,
# Conv
use_short_conv=False,
conv_size=4,
# Hedgehog
use_hedgehog=False,
attention_dropout=0.0,
residual_dropout=0.0,
mlp_dropout=0.0,
# xLSTM specific
qk_dim_factor=1,
v_dim_factor=1,
use_bias=False,
norm_reduction_force_float32=True,
gate_soft_cap=15.0,
weight_mode="single",
base_attention="xlstm_attention",
# mLSTM specific
max_inference_chunksize=16384,
chunkwise_kernel="chunkwise--triton_xl_chunk",
sequence_kernel="native_sequence__triton",
step_kernel="triton",
mode="train",
chunk_size=64,
return_last_states=True,
autocast_kernel_dtype="bfloat16",
eps=1e-6,
inference_state_dtype="float32",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.embedding_dim = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
self.swa_with_memory = swa_with_memory
self.sliding_window_memory = sliding_window_memory
self.swa_modulation = swa_modulation
self.swa_modulation_bounded = swa_modulation_bounded
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.use_hedgehog = use_hedgehog
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.residual_dropout = residual_dropout
self.mlp_dropout = mlp_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.base_attention = base_attention
self.layer_types = layer_types
# if self.layer_types is None:
# self.layer_types = [
# "sliding_attention"
# if self.sliding_window is not None and i >= self.max_window_layers
# else "full_attention"
# for i in range(self.num_hidden_layers)
# ]
self.nth_layer_sa = nth_layer_sa
if self.layer_types is None:
self.layer_types = []
assert nth_layer_sa >= 0, "nth_layer_sa must be non-negative"
for i in range(self.num_hidden_layers):
if nth_layer_sa == 0:
self.layer_types.append(base_attention)
continue
if i % nth_layer_sa == 0:
self.layer_types.append("qwen_attention")
else:
self.layer_types.append(base_attention)
# layer_type_validation(self.layer_types)
self.num_heads = self.num_attention_heads
self.qk_dim_factor = qk_dim_factor
self.v_dim_factor = v_dim_factor
self.use_bias = use_bias
self.norm_reduction_force_float32 = norm_reduction_force_float32
self.gate_soft_cap = gate_soft_cap
self.weight_mode = weight_mode
self.chunkwise_kernel = chunkwise_kernel
self.sequence_kernel = sequence_kernel
self.step_kernel = step_kernel
self.mode = mode
self.chunk_size = chunk_size
self.return_last_states = return_last_states
self.autocast_kernel_dtype = autocast_kernel_dtype
self.eps = eps
self.inference_state_dtype = inference_state_dtype
self.max_inference_chunksize = max_inference_chunksize
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def mlstm_backend_config(self):
return mLSTMBackendConfig(
chunkwise_kernel=self.chunkwise_kernel,
sequence_kernel=self.sequence_kernel,
step_kernel=self.step_kernel,
mode=self.mode,
chunk_size=self.chunk_size,
return_last_states=self.return_last_states,
autocast_kernel_dtype=self.autocast_kernel_dtype,
eps=self.eps,
inference_state_dtype=self.inference_state_dtype,
)
__all__ = ["xQwenConfig"]