|
|
from typing import Callable, Optional, Tuple, Union |
|
|
from dataclasses import dataclass |
|
|
import functools |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
import torch.nn.init as init |
|
|
from torch.nn import functional as F |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
|
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import ( |
|
|
GradientCheckpointingLayer, |
|
|
) |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
SequenceClassifierOutputWithPast, |
|
|
TokenClassifierOutput |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
|
|
|
from transformers.utils import auto_docstring, can_return_tuple, logging |
|
|
from torch.nn.attention.flex_attention import create_block_mask, flex_attention |
|
|
|
|
|
try: |
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
|
except ImportError: |
|
|
print("Flash Attention is not installed. Please install it to use xQwenForCausalLM with Flash Attention.") |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
from fla.layers.gated_deltaproduct import GatedDeltaProduct |
|
|
fla_available = True |
|
|
except: |
|
|
fla_available = False |
|
|
|
|
|
from fla.modules import ShortConvolution |
|
|
from fla.modules.feature_map import HedgehogFeatureMap |
|
|
|
|
|
from .configuration_xqwen import xQwenConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
from xlstm.xlstm_large.model import ( |
|
|
mLSTMStateType, |
|
|
soft_cap, |
|
|
|
|
|
mLSTMLayerConfig, |
|
|
mLSTMBackendConfig, |
|
|
mLSTMLayerStateType, |
|
|
mLSTMBackend, |
|
|
MultiHeadLayerNorm |
|
|
) |
|
|
|
|
|
class xLSTMCache: |
|
|
""" |
|
|
Cache / RNN State handler for xLSTM. |
|
|
|
|
|
Args: |
|
|
config: xLSTMConfig |
|
|
batch_size: int |
|
|
dtype: torch.dtype |
|
|
device: torch.device |
|
|
|
|
|
Attributes: |
|
|
seqlen_offset: int |
|
|
dtype: torch.dtype |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, config, batch_size: int, dtype: torch.dtype = torch.bfloat16, device: Optional[str] = None |
|
|
): |
|
|
self.seqlen_offset = torch.tensor(0, dtype=torch.int64, device=device) |
|
|
self.dtype = dtype |
|
|
self.config = config |
|
|
self.qk_head_dim = self.config.head_dim |
|
|
self.v_head_dim = self.config.head_dim |
|
|
|
|
|
self.rnn_state: mLSTMStateType = { |
|
|
layer: ( |
|
|
torch.zeros( |
|
|
[batch_size, config.num_heads, self.qk_head_dim, self.v_head_dim], dtype=dtype, device=device |
|
|
), |
|
|
torch.zeros([batch_size, config.num_heads, self.qk_head_dim], dtype=dtype, device=device), |
|
|
torch.zeros([batch_size, config.num_heads, 1], dtype=dtype, device=device), |
|
|
) |
|
|
for layer in range(config.num_hidden_layers) |
|
|
} |
|
|
self.rnn_state_initial = True |
|
|
|
|
|
def reset(self): |
|
|
self.rnn_state = { |
|
|
layer: ( |
|
|
torch.zeros_like(self.rnn_state[layer][0]), |
|
|
torch.zeros_like(self.rnn_state[layer][1]), |
|
|
torch.zeros_like(self.rnn_state[layer][2]), |
|
|
) |
|
|
for layer in self.rnn_state |
|
|
} |
|
|
self.rnn_state_initial = True |
|
|
|
|
|
@dataclass |
|
|
class xQwenModelOutputWithPast(BaseModelOutputWithPast): |
|
|
cache_params: Optional[xLSTMCache] = None |
|
|
|
|
|
@dataclass |
|
|
class xQwenCausalLMOutput(CausalLMOutputWithPast): |
|
|
cache_params: Optional[xLSTMCache] = None |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class xQwenRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
xQwenRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class xQwenMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
if self.config.mlp_dropout > 0.0: |
|
|
self.dropout = nn.Dropout(config.mlp_dropout) |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
if self.config.mlp_dropout > 0.0: |
|
|
down_proj = self.dropout(down_proj) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class xQwenAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: xQwenConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
|
) |
|
|
self.q_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = xQwenRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
class mLSTMLayer(nn.Module): |
|
|
def __init__(self, config: mLSTMLayerConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
|
|
|
|
|
|
self.head_dim = self.config.head_dim |
|
|
self.num_key_value_groups = config.num_heads // config.num_key_value_heads |
|
|
|
|
|
self.v_dim = int(config.embedding_dim * config.v_dim_factor) |
|
|
self.qk_dim = int(config.embedding_dim * config.qk_dim_factor) |
|
|
if self.config.weight_mode == "single": |
|
|
self.q = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=self.config.num_heads * self.head_dim, |
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
self.k = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=config.num_key_value_heads * self.head_dim, |
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
self.v = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=config.num_key_value_heads * self.head_dim, |
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
|
|
|
self.ogate_preact = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=self.head_dim * self.config.num_heads, |
|
|
|
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
self.igate_preact = nn.Linear( |
|
|
|
|
|
in_features=self.config.hidden_size, |
|
|
out_features=self.config.num_heads, |
|
|
bias=True, |
|
|
) |
|
|
self.fgate_preact = nn.Linear( |
|
|
|
|
|
in_features=self.config.hidden_size, |
|
|
out_features=self.config.num_heads, |
|
|
bias=True, |
|
|
) |
|
|
elif self.config.weight_mode == "fused": |
|
|
self.qkv_opreact = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=2 * self.qk_dim + 2 * self.v_dim, |
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
self.ifgate_preact = nn.Linear( |
|
|
in_features=self.config.hidden_size, |
|
|
out_features=2 * self.config.num_heads, |
|
|
bias=True, |
|
|
) |
|
|
|
|
|
self.ogate_act_fn = nn.Sigmoid() |
|
|
self.mlstm_backend = mLSTMBackend(config=self.config.mlstm_backend_config()) |
|
|
|
|
|
self.multihead_norm = MultiHeadLayerNorm( |
|
|
num_heads=self.config.num_heads, |
|
|
head_dim=self.head_dim, |
|
|
eps=self.config.norm_eps, |
|
|
use_weight=True, |
|
|
use_bias=self.config.use_bias, |
|
|
force_float32_reductions=self.config.norm_reduction_force_float32, |
|
|
) |
|
|
self.out_proj = nn.Linear( |
|
|
in_features=self.head_dim * self.config.num_heads, |
|
|
out_features=self.config.hidden_size, |
|
|
bias=self.config.use_bias, |
|
|
) |
|
|
|
|
|
if self.config.use_sliding_window: |
|
|
self.block_mask = None |
|
|
self.swa_attention = None |
|
|
if self.config.swa_modulation == "dynamic": |
|
|
self.swa_alpha = nn.Parameter( |
|
|
torch.tensor( |
|
|
0.5, dtype=torch.float32, requires_grad=True |
|
|
) |
|
|
) |
|
|
|
|
|
if self.config.use_short_conv: |
|
|
|
|
|
self.q_conv1d = ShortConvolution( |
|
|
hidden_size=self.config.hidden_size, |
|
|
kernel_size=self.config.conv_size, |
|
|
bias=False, |
|
|
activation='silu' |
|
|
) |
|
|
self.k_conv1d = ShortConvolution( |
|
|
hidden_size=self.config.hidden_size, |
|
|
kernel_size=self.config.conv_size, |
|
|
bias=False, |
|
|
activation='silu' |
|
|
) |
|
|
self.v_conv1d = ShortConvolution( |
|
|
hidden_size=self.config.hidden_size, |
|
|
kernel_size=self.config.conv_size, |
|
|
bias=False, |
|
|
activation='silu' |
|
|
) |
|
|
|
|
|
if self.config.use_hedgehog: |
|
|
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_dim) |
|
|
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_dim) |
|
|
|
|
|
|
|
|
def set_swa_block_mask(self, q_len, mem_window=4): |
|
|
block_mask = self.get_swa_block(with_memory=self.config.swa_with_memory, mem_window=mem_window) |
|
|
self.block_mask = create_block_mask(block_mask, B=None, H=None, Q_LEN=q_len, KV_LEN=q_len) |
|
|
self.swa_attention = functools.partial( |
|
|
flex_attention, block_mask=self.block_mask |
|
|
) |
|
|
self.q_len = q_len |
|
|
|
|
|
def get_swa_block(self, with_memory=False, mem_window=None): |
|
|
if with_memory: |
|
|
assert mem_window is not None, "mem_window must be specified for sliding window with memory" |
|
|
def swa_with_memory(b, h, q_idx, kv_idx): |
|
|
""" Sliding window causal attention with memory. |
|
|
|
|
|
Add mask so model always attents to first m tokens in the sequence. |
|
|
|
|
|
""" |
|
|
causal_mask = q_idx >= kv_idx |
|
|
window_mask = (q_idx - kv_idx) <= self.config.sliding_window |
|
|
memory_mask = kv_idx < mem_window |
|
|
return (causal_mask & window_mask) | memory_mask |
|
|
|
|
|
return swa_with_memory |
|
|
|
|
|
def sliding_window_causal(b, h, q_idx, kv_idx): |
|
|
causal_mask = q_idx >= kv_idx |
|
|
window_mask = (q_idx - kv_idx) <= self.config.sliding_window |
|
|
return causal_mask & window_mask |
|
|
|
|
|
return sliding_window_causal |
|
|
|
|
|
def forward( |
|
|
self, x: torch.Tensor, |
|
|
state: mLSTMLayerStateType | None = None, |
|
|
output_attentions: bool = False, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
) -> tuple[torch.Tensor, mLSTMLayerStateType | None]: |
|
|
assert x.ndim == 3, f"Input must have shape [B, S, D], got {x.shape}" |
|
|
B, S, _ = x.shape |
|
|
if self.config.weight_mode == "single": |
|
|
q = self.q(x) |
|
|
k = self.k(x) |
|
|
v = self.v(x) |
|
|
|
|
|
if self.config.use_short_conv: |
|
|
q, _ = self.q_conv1d(q) |
|
|
k, _ = self.k_conv1d(k) |
|
|
v, _ = self.v_conv1d(v) |
|
|
|
|
|
o_preact = self.ogate_preact(x) |
|
|
i_preact = soft_cap( |
|
|
self.igate_preact(x), cap_value=self.config.gate_soft_cap |
|
|
) |
|
|
f_preact = soft_cap( |
|
|
self.fgate_preact(x), cap_value=self.config.gate_soft_cap |
|
|
) |
|
|
|
|
|
elif self.config.weight_mode == "fused": |
|
|
qkv_opreact = self.qkv_opreact(x) |
|
|
q, k, v, o_preact = torch.tensor_split( |
|
|
qkv_opreact, |
|
|
( |
|
|
self.qk_dim, |
|
|
2 * self.qk_dim, |
|
|
2 * self.qk_dim + self.v_dim, |
|
|
), |
|
|
dim=-1, |
|
|
) |
|
|
|
|
|
if_preact = soft_cap( |
|
|
self.ifgate_preact(x), cap_value=self.config.gate_soft_cap |
|
|
) |
|
|
i_preact, f_preact = torch.tensor_split( |
|
|
if_preact, (self.config.num_heads,), dim=-1 |
|
|
) |
|
|
|
|
|
q = q.reshape(B, S, self.config.num_heads, -1).transpose(1, 2) |
|
|
k = k.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2) |
|
|
v = v.reshape(B, S, self.config.num_key_value_heads, -1).transpose(1, 2) |
|
|
|
|
|
k = repeat_kv(k, self.num_key_value_groups) |
|
|
v = repeat_kv(v, self.num_key_value_groups) |
|
|
|
|
|
if self.config.use_hedgehog: |
|
|
q = self.feature_map_q(q) |
|
|
k = self.feature_map_k(k) |
|
|
|
|
|
if self.config.use_sliding_window: |
|
|
sq, sk, sv = q, k, v |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = torch.arange(S, device=x.device).unsqueeze(0) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
sq, sk, = apply_rotary_pos_emb(sq, sk, cos, sin) |
|
|
|
|
|
i_preact = i_preact.transpose(1, 2) |
|
|
f_preact = f_preact.transpose(1, 2) |
|
|
if state is None: |
|
|
c_initial, n_initial, m_initial = None, None, None |
|
|
else: |
|
|
c_initial, n_initial, m_initial = state |
|
|
|
|
|
|
|
|
h, state = self.mlstm_backend( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
i=i_preact, |
|
|
f=f_preact, |
|
|
c_initial=c_initial, |
|
|
n_initial=n_initial, |
|
|
m_initial=m_initial, |
|
|
) |
|
|
|
|
|
h = h.transpose(1, 2) |
|
|
h_norm = self.multihead_norm(h) |
|
|
|
|
|
if self.config.use_sliding_window: |
|
|
|
|
|
if sq.dtype == torch.float32: |
|
|
sq, sk, sv = sq.to(torch.float16), sk.to(torch.float16), sv.to(torch.float16) |
|
|
|
|
|
q_len = sq.size(-2) |
|
|
|
|
|
if self.block_mask is None or self.swa_attention is None: |
|
|
self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory) |
|
|
elif self.q_len != q_len: |
|
|
self.set_swa_block_mask(q_len, mem_window=self.config.sliding_window_memory) |
|
|
|
|
|
y = self.swa_attention(sq, sk, sv).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = self.multihead_norm(y) |
|
|
if self.config.swa_modulation == "static": |
|
|
out = 0.5 * y + 0.5 * h_norm |
|
|
elif self.config.swa_modulation == "dynamic": |
|
|
if self.config.swa_modulation_bounded: |
|
|
out = y + torch.tanh(self.swa_alpha) * h_norm |
|
|
else: |
|
|
out = y + self.swa_alpha * h_norm |
|
|
else: |
|
|
out = y |
|
|
|
|
|
else: |
|
|
out = h_norm |
|
|
|
|
|
|
|
|
out = out.reshape(B, S, -1) |
|
|
out = self.ogate_act_fn(o_preact) * out |
|
|
y = self.out_proj(out) |
|
|
return y, state |
|
|
|
|
|
token_mixer_type = { |
|
|
"qwen_attention": xQwenAttention, |
|
|
"xlstm_attention": mLSTMLayer, |
|
|
} |
|
|
def build_mlstm_config(config): |
|
|
return config |
|
|
return mLSTMLayerConfig( |
|
|
embedding_dim=config.embedding_dim, |
|
|
num_heads=config.num_heads, |
|
|
use_bias=config.use_bias, |
|
|
norm_eps=config.rms_norm_eps, |
|
|
norm_reduction_force_float32=config.norm_reduction_force_float32, |
|
|
qk_dim_factor=1, |
|
|
v_dim_factor=1, |
|
|
num_key_value_heads=config.num_key_value_heads, |
|
|
gate_soft_cap=config.gate_soft_cap, |
|
|
weight_mode="single", |
|
|
mlstm_backend=mLSTMBackendConfig( |
|
|
chunkwise_kernel=config.chunkwise_kernel, |
|
|
sequence_kernel=config.sequence_kernel, |
|
|
step_kernel=config.step_kernel, |
|
|
mode=config.mode, |
|
|
chunk_size=config.chunk_size, |
|
|
return_last_states=config.return_last_states, |
|
|
autocast_kernel_dtype=config.autocast_kernel_dtype, |
|
|
eps=config.eps, |
|
|
inference_state_dtype=config.inference_state_dtype, |
|
|
), |
|
|
) |
|
|
|
|
|
def build_gdp(config): |
|
|
assert fla_available, "GatedDeltaProduct requires fla package to be installed." |
|
|
|
|
|
return GatedDeltaProduct( |
|
|
hidden_size=config.hidden_size, |
|
|
expand_v=1, |
|
|
head_dim=config.hidden_size // config.num_attention_heads, |
|
|
num_heads=config.num_attention_heads, |
|
|
use_output_gate=False, |
|
|
use_short_conv=True, |
|
|
use_forget_gate=True, |
|
|
num_householder=2 |
|
|
) |
|
|
|
|
|
|
|
|
class xQwenDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: xQwenConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
if self.attention_type == "qwen_attention": |
|
|
self.self_attn = xQwenAttention(config=config, layer_idx=layer_idx) |
|
|
elif self.attention_type == "xlstm_attention": |
|
|
self.self_attn = mLSTMLayer(build_mlstm_config(config)) |
|
|
elif self.attention_type == "gdp_attention": |
|
|
self.self_attn = build_gdp(config) |
|
|
else: |
|
|
raise ValueError("Unsupported attention type: {}".format(self.attention_type)) |
|
|
|
|
|
self.mlp = xQwenMLP(config) |
|
|
self.input_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
state: mLSTMStateType | None = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
if output_attentions: |
|
|
return None, self.self_attn( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
output_attentions=output_attentions, |
|
|
position_ids=position_ids, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states, *state = self.self_attn( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
output_attentions=output_attentions, |
|
|
position_ids=position_ids, |
|
|
position_embeddings=position_embeddings, |
|
|
state=state, |
|
|
) |
|
|
|
|
|
if len(state) == 1: |
|
|
state = state[0] |
|
|
else: |
|
|
state = None |
|
|
|
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs, state |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class xQwenPreTrainedModel(PreTrainedModel): |
|
|
config_class = xQwenConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["xQwenDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, xQwenRMSNorm): |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class xQwenRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: xQwenConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings\ |
|
|
|
|
|
self.config = config |
|
|
|
|
|
|
|
|
if self.config.use_sliding_window and self.config.use_hedgehog: |
|
|
|
|
|
self.config.head_dim *= 2 |
|
|
|
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class xQwenModel(xQwenPreTrainedModel): |
|
|
config_class = xQwenConfig |
|
|
def __init__(self, config: xQwenConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[xQwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = xQwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = xQwenRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
self.has_sliding_layers = "sliding_attention" in self.config.layer_types |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
cache_params: Optional[xLSTMCache] = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_cache = False |
|
|
if use_cache: |
|
|
if cache_params is None: |
|
|
cache_params = xLSTMCache( |
|
|
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype |
|
|
) |
|
|
else: |
|
|
cache_params = None |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
inference_with_cache = ( |
|
|
not self.training |
|
|
and self.config.max_inference_chunksize < hidden_states.shape[1] |
|
|
and not output_hidden_states |
|
|
) |
|
|
if inference_with_cache: |
|
|
all_hidden_states = None |
|
|
offset = 0 |
|
|
with torch.no_grad(): |
|
|
if cache_params is None: |
|
|
cache_params = xLSTMCache(config=self.config, batch_size=hidden_states.shape[0]) |
|
|
final_state = torch.zeros_like(hidden_states) |
|
|
while offset < hidden_states.shape[1]: |
|
|
hidden_states_chunk = hidden_states[ |
|
|
:, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1]) |
|
|
] |
|
|
|
|
|
for i, layer in self.layers[: self.config.num_hidden_layers]: |
|
|
hidden_state_chunk, rnn_state = layer( |
|
|
hidden_state_chunk, |
|
|
state=cache_params.rnn_state[i], |
|
|
) |
|
|
for state_idx in range(len(cache_params.rnn_state[1])): |
|
|
local_rnn_state = rnn_state[state_idx] |
|
|
cache_params.rnn_state[i][state_idx].copy_(local_rnn_state) |
|
|
cache_params.rnn_state_initial = False |
|
|
final_state[ |
|
|
:, offset : min(offset + self.config.max_inference_chunksize, hidden_states.shape[1]) |
|
|
] = hidden_state_chunk |
|
|
offset += self.config.max_inference_chunksize |
|
|
hidden_states = final_state |
|
|
else: |
|
|
for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
layer_outputs, rnn_state = decoder_layer( |
|
|
hidden_states, |
|
|
|
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
state=cache_params.rnn_state[i] if cache_params is not None else None, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
if cache_params: |
|
|
for state_idx in range(len(cache_params.rnn_state[i])): |
|
|
local_rnn_state = rnn_state[state_idx] |
|
|
cache_params.rnn_state[i][state_idx].copy_(local_rnn_state) |
|
|
cache_params.rnn_state_initial = False |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if use_cache: |
|
|
cache_params.seqlen_offset += inputs_embeds.shape[1] |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return xQwenModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
cache_params= cache_params if use_cache else None |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class xQwenForCausalLM(xQwenPreTrainedModel, GenerationMixin): |
|
|
config_class = xQwenConfig |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = xQwenModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs, |
|
|
) -> CausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, xQwenForCausalLM |
|
|
|
|
|
>>> model = xQwenForCausalLM.from_pretrained("Qwen/xQwen-8B") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/xQwen-8B") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
|
|
|
return xQwenCausalLMOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def copy_from_teacher(self, teacher, copy_qkv: bool = True): |
|
|
assert len(self.model.layers) == len(teacher.model.layers) |
|
|
|
|
|
self.model.embed_tokens.weight.data.copy_(teacher.get_input_embeddings().weight.data) |
|
|
self.model.norm.weight.data.copy_(teacher.model.norm.weight.data) |
|
|
self.lm_head.weight.data.copy_(teacher.get_output_embeddings().weight.data) |
|
|
|
|
|
for self_layer, teacher_layer in zip(self.model.layers, teacher.model.layers): |
|
|
|
|
|
self_layer.mlp.load_state_dict(teacher_layer.mlp.state_dict()) |
|
|
self_layer.input_layernorm.load_state_dict(teacher_layer.input_layernorm.state_dict()) |
|
|
self_layer.post_attention_layernorm.load_state_dict(teacher_layer.post_attention_layernorm.state_dict()) |
|
|
|
|
|
if copy_qkv: |
|
|
self_layer.self_attn.q.load_state_dict(teacher_layer.self_attn.q_proj.state_dict()) |
|
|
self_layer.self_attn.out_proj.load_state_dict(teacher_layer.self_attn.o_proj.state_dict()) |
|
|
|
|
|
v_proj_unrolled = teacher_layer.self_attn.v_proj |
|
|
k_proj_unrolled = teacher_layer.self_attn.k_proj |
|
|
|
|
|
self_layer.self_attn.v.load_state_dict(v_proj_unrolled.state_dict()) |
|
|
self_layer.self_attn.k.load_state_dict(k_proj_unrolled.state_dict()) |
|
|
|
|
|
self_layer.self_attn.igate_preact.bias.data.fill_(torch.log(torch.tensor(2.0))) |
|
|
self_layer.self_attn.igate_preact.bias.data.fill_(-torch.log(torch.tensor(2.0))) |
|
|
|
|
|
|
|
|
init.xavier_uniform_(self_layer.self_attn.igate_preact.weight.data) |
|
|
self_layer.self_attn.igate_preact.weight.data *= 0.1 |
|
|
init.xavier_uniform_(self_layer.self_attn.fgate_preact.weight.data) |
|
|
self_layer.self_attn.fgate_preact.weight.data *= 0.1 |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
inputs_embeds=None, |
|
|
use_cache=None, |
|
|
cache_params = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
if use_cache: |
|
|
|
|
|
if cache_position is None: |
|
|
raise ValueError( |
|
|
"`cache_position` should not be None as it should have been initialized in " |
|
|
"`model.generate`, you are responsible for passing in a valid `cache_position` if " |
|
|
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cache_params is not None: |
|
|
input_ids = input_ids[:, -1:] |
|
|
if inputs_embeds is not None: |
|
|
inputs_embeds = inputs_embeds[:, -1:] |
|
|
|
|
|
attention_mask = None |
|
|
|
|
|
if inputs_embeds is not None and cache_params is None: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"attention_mask": attention_mask, |
|
|
"cache_params": cache_params, |
|
|
"use_cache": use_cache, |
|
|
"cache_position": cache_position, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
class xQwenForSequenceClassification(xQwenPreTrainedModel): |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.num_labels = config.num_labels |
|
|
|
|
|
self.model = xQwenModel(config) |
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
**kwargs |
|
|
): |
|
|
transformer_outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = transformer_outputs.last_hidden_state |
|
|
logits = self.score(hidden_states) |
|
|
|
|
|
if input_ids is not None: |
|
|
batch_size = input_ids.shape[0] |
|
|
else: |
|
|
batch_size = inputs_embeds.shape[0] |
|
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
|
if self.config.pad_token_id is None: |
|
|
last_non_pad_token = -1 |
|
|
elif input_ids is not None: |
|
|
|
|
|
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) |
|
|
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) |
|
|
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) |
|
|
else: |
|
|
last_non_pad_token = -1 |
|
|
logger.warning_once( |
|
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
|
) |
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) |
|
|
|
|
|
return SequenceClassifierOutputWithPast( |
|
|
loss=loss, |
|
|
logits=pooled_logits, |
|
|
past_key_values=transformer_outputs.past_key_values, |
|
|
hidden_states=transformer_outputs.hidden_states, |
|
|
attentions=transformer_outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
class xQwenForTokenClassification(xQwenPreTrainedModel): |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.num_labels = config.num_labels |
|
|
|
|
|
self.model = xQwenModel(config) |
|
|
if getattr(config, "classifier_dropout", None) is not None: |
|
|
classifier_dropout = config.classifier_dropout |
|
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
|
classifier_dropout = config.hidden_dropout |
|
|
else: |
|
|
classifier_dropout = 0.1 |
|
|
self.dropout = nn.Dropout(classifier_dropout) |
|
|
self.score = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> TokenClassifierOutput: |
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
sequence_output = outputs.last_hidden_state |
|
|
sequence_output = self.dropout(sequence_output) |
|
|
logits = self.score(sequence_output) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits, labels, self.config) |
|
|
|
|
|
return TokenClassifierOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM |
|
|
|
|
|
AutoConfig.register(xQwenConfig.model_type, xQwenConfig) |
|
|
AutoModel.register(xQwenConfig, xQwenModel) |
|
|
AutoModelForCausalLM.register(xQwenConfig, xQwenForCausalLM) |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"xQwenForCausalLM", |
|
|
"xQwenModel", |
|
|
"xQwenPreTrainedModel", |
|
|
"xQwenForSequenceClassification", |
|
|
"xQwenForTokenClassification", |
|
|
] |
|
|
|
|
|
|