Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Quangnguyen711/nothing-mutilingua")
# Run inference
sentences = [
'while drying himself off with a towel and about to change suddenly ah',
'vừa lau khô người bằng khăn và định thay đồ đột nhiên ah',
'và cứ thế vị khách không mời mà đến rời khỏi ký túc xá của ha jun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.8401, -0.0778],
# [ 0.8401, 1.0000, -0.0855],
# [-0.0778, -0.0855, 1.0000]])
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
standing there with a flushed face and hands covering her eyes was jooah |
đứng đó với khuôn mặt đỏ ửng và hai tay che mắt là joo ah |
how come i asked |
sao vậy tôi hỏi |
the challenges anna faced would certainly mature her mentally |
những thử thách anna đối mặt chắc chắn sẽ giúp cô ấy trưởng thành về mặt tinh thần |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 256num_train_epochs: 50batch_sampler: no_duplicatesmulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 50max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step |
|---|---|
| 1.0 | 11 |
| 2.0 | 22 |
| 3.0 | 33 |
| 4.0 | 44 |
| 5.0 | 55 |
| 6.0 | 66 |
| 7.0 | 77 |
| 8.0 | 88 |
| 9.0 | 99 |
| 9.0909 | 100 |
| 10.0 | 110 |
| 11.0 | 121 |
| 12.0 | 132 |
| 13.0 | 143 |
| 14.0 | 154 |
| 15.0 | 165 |
| 16.0 | 176 |
| 17.0 | 187 |
| 18.0 | 198 |
| 18.1818 | 200 |
| 19.0 | 209 |
| 20.0 | 220 |
| 21.0 | 231 |
| 22.0 | 242 |
| 23.0 | 253 |
| 24.0 | 264 |
| 25.0 | 275 |
| 26.0 | 286 |
| 27.0 | 297 |
| 27.2727 | 300 |
| 28.0 | 308 |
| 29.0 | 319 |
| 30.0 | 330 |
| 31.0 | 341 |
| 32.0 | 352 |
| 33.0 | 363 |
| 34.0 | 374 |
| 35.0 | 385 |
| 36.0 | 396 |
| 36.3636 | 400 |
| 37.0 | 407 |
| 38.0 | 418 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}