Add Artificial Analysis evaluations for qwen3-vl-235b-a22b-instruct

#18
Files changed (1) hide show
  1. README.md +218 -167
README.md CHANGED
@@ -1,168 +1,219 @@
1
- ---
2
- license: apache-2.0
3
- library_name: transformers
4
- ---
5
- <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
6
- <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
7
- </a>
8
-
9
-
10
- # Qwen3-VL-235B-A22B-Instruct
11
-
12
-
13
- Meet Qwen3-VL the most powerful vision-language model in the Qwen series to date.
14
-
15
- This generation delivers comprehensive upgrades across the board: superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities.
16
-
17
- Available in Dense and MoE architectures that scale from edge to cloud, with Instruct and reasoning‑enhanced Thinking editions for flexible, on‑demand deployment.
18
-
19
-
20
- #### Key Enhancements:
21
-
22
- * **Visual Agent**: Operates PC/mobile GUIs—recognizes elements, understands functions, invokes tools, completes tasks.
23
-
24
- * **Visual Coding Boost**: Generates Draw.io/HTML/CSS/JS from images/videos.
25
-
26
- * **Advanced Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides stronger 2D grounding and enables 3D grounding for spatial reasoning and embodied AI.
27
-
28
- * **Long Context & Video Understanding**: Native 256K context, expandable to 1M; handles books and hours-long video with full recall and second-level indexing.
29
-
30
- * **Enhanced Multimodal Reasoning**: Excels in STEM/Math—causal analysis and logical, evidence-based answers.
31
-
32
- * **Upgraded Visual Recognition**: Broader, higher-quality pretraining is able to “recognize everything”—celebrities, anime, products, landmarks, flora/fauna, etc.
33
-
34
- * **Expanded OCR**: Supports 32 languages (up from 19); robust in low light, blur, and tilt; better with rare/ancient characters and jargon; improved long-document structure parsing.
35
-
36
- * **Text Understanding on par with pure LLMs**: Seamless text–vision fusion for lossless, unified comprehension.
37
-
38
-
39
- #### Model Architecture Updates:
40
-
41
- <p align="center">
42
- <img src="https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/qwen3vl_arc.jpg" width="80%"/>
43
- <p>
44
-
45
-
46
- 1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning.
47
-
48
- 2. **DeepStack**: Fuses multi‑level ViT features to capture fine‑grained details and sharpen image–text alignment.
49
-
50
- 3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling.
51
-
52
- This is the weight repository for Qwen3-VL-235B-A22B-Instruct.
53
-
54
-
55
- ---
56
-
57
- ## Model Performance
58
-
59
- **Multimodal performance**
60
-
61
- ![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_vl.jpg)
62
-
63
- **Pure text performance**
64
- ![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_text.jpg)
65
-
66
- ## Quickstart
67
-
68
- Below, we provide simple examples to show how to use Qwen3-VL with 🤖 ModelScope and 🤗 Transformers.
69
-
70
- The code of Qwen3-VL has been in the latest Hugging Face transformers and we advise you to build from source with command:
71
- ```
72
- pip install git+https://github.com/huggingface/transformers
73
- # pip install transformers==4.57.0 # currently, V4.57.0 is not released
74
- ```
75
-
76
- ### Using 🤗 Transformers to Chat
77
-
78
- Here we show a code snippet to show how to use the chat model with `transformers`:
79
-
80
- ```python
81
- from transformers import Qwen3VLMoeForConditionalGeneration, AutoProcessor
82
-
83
- # default: Load the model on the available device(s)
84
- model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
85
- "Qwen/Qwen3-VL-235B-A22B-Instruct", dtype="auto", device_map="auto"
86
- )
87
-
88
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
89
- # model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
90
- # "Qwen/Qwen3-VL-235B-A22B-Instruct",
91
- # dtype=torch.bfloat16,
92
- # attn_implementation="flash_attention_2",
93
- # device_map="auto",
94
- # )
95
-
96
- processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-235B-A22B-Instruct")
97
-
98
- messages = [
99
- {
100
- "role": "user",
101
- "content": [
102
- {
103
- "type": "image",
104
- "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
105
- },
106
- {"type": "text", "text": "Describe this image."},
107
- ],
108
- }
109
- ]
110
-
111
- # Preparation for inference
112
- inputs = processor.apply_chat_template(
113
- messages,
114
- tokenize=True,
115
- add_generation_prompt=True,
116
- return_dict=True,
117
- return_tensors="pt"
118
- )
119
-
120
- # Inference: Generation of the output
121
- generated_ids = model.generate(**inputs, max_new_tokens=128)
122
- generated_ids_trimmed = [
123
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
124
- ]
125
- output_text = processor.batch_decode(
126
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
127
- )
128
- print(output_text)
129
- ```
130
-
131
-
132
-
133
- ## Citation
134
-
135
- If you find our work helpful, feel free to give us a cite.
136
-
137
- ```
138
- @misc{qwen3technicalreport,
139
- title={Qwen3 Technical Report},
140
- author={Qwen Team},
141
- year={2025},
142
- eprint={2505.09388},
143
- archivePrefix={arXiv},
144
- primaryClass={cs.CL},
145
- url={https://arxiv.org/abs/2505.09388},
146
- }
147
-
148
- @article{Qwen2.5-VL,
149
- title={Qwen2.5-VL Technical Report},
150
- author={Bai, Shuai and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Song, Sibo and Dang, Kai and Wang, Peng and Wang, Shijie and Tang, Jun and Zhong, Humen and Zhu, Yuanzhi and Yang, Mingkun and Li, Zhaohai and Wan, Jianqiang and Wang, Pengfei and Ding, Wei and Fu, Zheren and Xu, Yiheng and Ye, Jiabo and Zhang, Xi and Xie, Tianbao and Cheng, Zesen and Zhang, Hang and Yang, Zhibo and Xu, Haiyang and Lin, Junyang},
151
- journal={arXiv preprint arXiv:2502.13923},
152
- year={2025}
153
- }
154
-
155
- @article{Qwen2VL,
156
- title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
157
- author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
158
- journal={arXiv preprint arXiv:2409.12191},
159
- year={2024}
160
- }
161
-
162
- @article{Qwen-VL,
163
- title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
164
- author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
165
- journal={arXiv preprint arXiv:2308.12966},
166
- year={2023}
167
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ model-index:
5
+ - name: Qwen3-VL-235B-A22B-Instruct
6
+ results:
7
+ - task:
8
+ type: evaluation
9
+ dataset:
10
+ name: Artificial Analysis Benchmarks
11
+ type: artificial_analysis
12
+ metrics:
13
+ - name: Artificial Analysis Intelligence Index
14
+ type: artificial_analysis_intelligence_index
15
+ value: 44.1
16
+ - name: Artificial Analysis Coding Index
17
+ type: artificial_analysis_coding_index
18
+ value: 33.9
19
+ - name: Artificial Analysis Math Index
20
+ type: artificial_analysis_math_index
21
+ value: 70.7
22
+ - name: Mmlu Pro
23
+ type: mmlu_pro
24
+ value: 0.823
25
+ - name: Gpqa
26
+ type: gpqa
27
+ value: 0.712
28
+ - name: Hle
29
+ type: hle
30
+ value: 0.063
31
+ - name: Livecodebench
32
+ type: livecodebench
33
+ value: 0.594
34
+ - name: Scicode
35
+ type: scicode
36
+ value: 0.359
37
+ - name: Aime 25
38
+ type: aime_25
39
+ value: 0.707
40
+ - name: Ifbench
41
+ type: ifbench
42
+ value: 0.427
43
+ - name: Lcr
44
+ type: lcr
45
+ value: 0.317
46
+ - name: Terminalbench Hard
47
+ type: terminalbench_hard
48
+ value: 0.064
49
+ - name: Tau2
50
+ type: tau2
51
+ value: 0.351
52
+ source:
53
+ name: Artificial Analysis API
54
+ url: https://artificialanalysis.ai
55
+ ---
56
+ <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
57
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
58
+ </a>
59
+
60
+
61
+ # Qwen3-VL-235B-A22B-Instruct
62
+
63
+
64
+ Meet Qwen3-VL — the most powerful vision-language model in the Qwen series to date.
65
+
66
+ This generation delivers comprehensive upgrades across the board: superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities.
67
+
68
+ Available in Dense and MoE architectures that scale from edge to cloud, with Instruct and reasoning‑enhanced Thinking editions for flexible, on‑demand deployment.
69
+
70
+
71
+ #### Key Enhancements:
72
+
73
+ * **Visual Agent**: Operates PC/mobile GUIs—recognizes elements, understands functions, invokes tools, completes tasks.
74
+
75
+ * **Visual Coding Boost**: Generates Draw.io/HTML/CSS/JS from images/videos.
76
+
77
+ * **Advanced Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides stronger 2D grounding and enables 3D grounding for spatial reasoning and embodied AI.
78
+
79
+ * **Long Context & Video Understanding**: Native 256K context, expandable to 1M; handles books and hours-long video with full recall and second-level indexing.
80
+
81
+ * **Enhanced Multimodal Reasoning**: Excels in STEM/Math—causal analysis and logical, evidence-based answers.
82
+
83
+ * **Upgraded Visual Recognition**: Broader, higher-quality pretraining is able to “recognize everything”—celebrities, anime, products, landmarks, flora/fauna, etc.
84
+
85
+ * **Expanded OCR**: Supports 32 languages (up from 19); robust in low light, blur, and tilt; better with rare/ancient characters and jargon; improved long-document structure parsing.
86
+
87
+ * **Text Understanding on par with pure LLMs**: Seamless text–vision fusion for lossless, unified comprehension.
88
+
89
+
90
+ #### Model Architecture Updates:
91
+
92
+ <p align="center">
93
+ <img src="https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/qwen3vl_arc.jpg" width="80%"/>
94
+ <p>
95
+
96
+
97
+ 1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning.
98
+
99
+ 2. **DeepStack**: Fuses multi‑level ViT features to capture fine‑grained details and sharpen image–text alignment.
100
+
101
+ 3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling.
102
+
103
+ This is the weight repository for Qwen3-VL-235B-A22B-Instruct.
104
+
105
+
106
+ ---
107
+
108
+ ## Model Performance
109
+
110
+ **Multimodal performance**
111
+
112
+ ![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_vl.jpg)
113
+
114
+ **Pure text performance**
115
+ ![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_text.jpg)
116
+
117
+ ## Quickstart
118
+
119
+ Below, we provide simple examples to show how to use Qwen3-VL with 🤖 ModelScope and 🤗 Transformers.
120
+
121
+ The code of Qwen3-VL has been in the latest Hugging Face transformers and we advise you to build from source with command:
122
+ ```
123
+ pip install git+https://github.com/huggingface/transformers
124
+ # pip install transformers==4.57.0 # currently, V4.57.0 is not released
125
+ ```
126
+
127
+ ### Using 🤗 Transformers to Chat
128
+
129
+ Here we show a code snippet to show how to use the chat model with `transformers`:
130
+
131
+ ```python
132
+ from transformers import Qwen3VLMoeForConditionalGeneration, AutoProcessor
133
+
134
+ # default: Load the model on the available device(s)
135
+ model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
136
+ "Qwen/Qwen3-VL-235B-A22B-Instruct", dtype="auto", device_map="auto"
137
+ )
138
+
139
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
140
+ # model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
141
+ # "Qwen/Qwen3-VL-235B-A22B-Instruct",
142
+ # dtype=torch.bfloat16,
143
+ # attn_implementation="flash_attention_2",
144
+ # device_map="auto",
145
+ # )
146
+
147
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-235B-A22B-Instruct")
148
+
149
+ messages = [
150
+ {
151
+ "role": "user",
152
+ "content": [
153
+ {
154
+ "type": "image",
155
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
156
+ },
157
+ {"type": "text", "text": "Describe this image."},
158
+ ],
159
+ }
160
+ ]
161
+
162
+ # Preparation for inference
163
+ inputs = processor.apply_chat_template(
164
+ messages,
165
+ tokenize=True,
166
+ add_generation_prompt=True,
167
+ return_dict=True,
168
+ return_tensors="pt"
169
+ )
170
+
171
+ # Inference: Generation of the output
172
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
173
+ generated_ids_trimmed = [
174
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
175
+ ]
176
+ output_text = processor.batch_decode(
177
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
178
+ )
179
+ print(output_text)
180
+ ```
181
+
182
+
183
+
184
+ ## Citation
185
+
186
+ If you find our work helpful, feel free to give us a cite.
187
+
188
+ ```
189
+ @misc{qwen3technicalreport,
190
+ title={Qwen3 Technical Report},
191
+ author={Qwen Team},
192
+ year={2025},
193
+ eprint={2505.09388},
194
+ archivePrefix={arXiv},
195
+ primaryClass={cs.CL},
196
+ url={https://arxiv.org/abs/2505.09388},
197
+ }
198
+
199
+ @article{Qwen2.5-VL,
200
+ title={Qwen2.5-VL Technical Report},
201
+ author={Bai, Shuai and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Song, Sibo and Dang, Kai and Wang, Peng and Wang, Shijie and Tang, Jun and Zhong, Humen and Zhu, Yuanzhi and Yang, Mingkun and Li, Zhaohai and Wan, Jianqiang and Wang, Pengfei and Ding, Wei and Fu, Zheren and Xu, Yiheng and Ye, Jiabo and Zhang, Xi and Xie, Tianbao and Cheng, Zesen and Zhang, Hang and Yang, Zhibo and Xu, Haiyang and Lin, Junyang},
202
+ journal={arXiv preprint arXiv:2502.13923},
203
+ year={2025}
204
+ }
205
+
206
+ @article{Qwen2VL,
207
+ title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
208
+ author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
209
+ journal={arXiv preprint arXiv:2409.12191},
210
+ year={2024}
211
+ }
212
+
213
+ @article{Qwen-VL,
214
+ title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
215
+ author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
216
+ journal={arXiv preprint arXiv:2308.12966},
217
+ year={2023}
218
+ }
219
  ```