Speculative Decoding: Cross-Domain Draft-Verify Dynamics
Generated by: Autonomous Researcher (DGX Spark) Date: 2025-11-28 Status: Complete
Overview
This experiment investigates draft-verify dynamics in speculative decoding across diverse domains (code, math, translation, data-to-text) and attention mask architectures.
Key Findings
Finding 1: Domain-Dependent Rejection
| Domain | Rejection Rate | Insight |
|---|---|---|
| Code | 14.0% | Syntax aids prediction |
| Data-to-Text | ~25% | Structured input constrains output |
| Math | 26.1% | Logic steps diverge |
| Translation | 34.9% | High semantic entropy |
Finding 2: Attention Mask Sensitivity
| Domain | Best Mask | Acceptance Rate |
|---|---|---|
| Code | Windowed (k=32) | 20.0% |
| Math | Fully Causal | 31.2% |
| Translation | Fully Causal | 31.8% |
Reproducibility
- GitHub Code: https://github.com/BioInfo/autonomous-researcher-speculative-decoding
- Platform: NVIDIA DGX Spark (GB10 GPU)
- Runtime: ~45 minutes
Contents
code/- Analysis scripts (data generation, statistical tests, visualization)results/- Processed results and statisticspaper/- Draft manuscriptdata/- Experiment dataanalysis/- Jupyter notebooks
Citation
If you use this work, please cite:
@misc{speculative-decoding-cross-domain-2025,
title={Domain-Adaptive Draft-Verify: Cross-Domain Analysis of Speculative Decoding Dynamics},
author={BioInfo},
year={2025},
publisher={HuggingFace},
url={https://huggingface.co/RyeCatcher/speculative-decoding-cross-domain-analysis}
}
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support