metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:58800
- loss:MultipleNegativesRankingLoss
base_model: Shuu12121/CodeModernBERT-Finch-Pre
widget:
- source_sentence: >-
Returns boolean indicating whether the requestUrl matches against the
paths configured.
@param requestedUrl - url requested by user
@param opts - unless configuration
@returns {boolean}
sentences:
- |-
def xmoe2_v1_l4k_global_only():
""""""
hparams = xmoe2_v1_l4k()
hparams.decoder_layers = [
"att" if l == "local_att" else l for l in hparams.decoder_layers]
return hparams
- |-
function matchesPath(requestedUrl, opts) {
var paths = !opts.path || Array.isArray(opts.path) ?
opts.path : [opts.path];
if (paths) {
return paths.some(function(p) {
return (typeof p === 'string' && p === requestedUrl.pathname) ||
(p instanceof RegExp && !! p.exec(requestedUrl.pathname));
});
}
return false;
}
- |-
public static function factory($accessToken, $currentTeam)
{
$client = Client::factory($accessToken);
return new self($client, $currentTeam);
}
- source_sentence: >-
// New creates a new ImageGraphics including an image.RGBA of dimension w
x h
// with background bgcol. If font is nil it will use a builtin font.
// If fontsize is empty useful default are used.
sentences:
- "func New(width, height int, bgcol color.RGBA, font *truetype.Font, fontsize map[chart.FontSize]float64) *ImageGraphics {\n\timg := image.NewRGBA(image.Rect(0, 0, width, height))\n\tgc := draw2dimg.NewGraphicContext(img)\n\tgc.SetLineJoin(draw2d.BevelJoin)\n\tgc.SetLineCap(draw2d.SquareCap)\n\tgc.SetStrokeColor(image.Black)\n\tgc.SetFillColor(bgcol)\n\tgc.Translate(0.5, 0.5)\n\tgc.Clear()\n\tif font == nil {\n\t\tfont = defaultFont\n\t}\n\tif len(fontsize) == 0 {\n\t\tfontsize = ConstructFontSizes(13)\n\t}\n\treturn &ImageGraphics{Image: img, x0: 0, y0: 0, w: width, h: height,\n\t\tbg: bgcol, gc: gc, font: font, fs: fontsize}\n}"
- >-
public static void requestDataLogsForApp(final Context context, final
UUID appUuid) {
final Intent requestIntent = new Intent(INTENT_DL_REQUEST_DATA);
requestIntent.putExtra(APP_UUID, appUuid);
context.sendBroadcast(requestIntent);
}
- |-
final protected function setWriteMode($mode)
{
if (!in_array($mode, [static::WRITE_MODE_INSERT, static::WRITE_MODE_UPSERT, static::WRITE_MODE_UPDATE])) {
throw new \InvalidArgumentException(sprintf('Passed write mode "%s" is invalid!', $mode));
}
$this->writeMode = $mode;
}
- source_sentence: |-
Builds the path for a closed arc, returning a PolygonOptions that can be
further customised before use.
@param center
@param start
@param end
@param arcType Pass in either ArcType.CHORD or ArcType.ROUND
@return PolygonOptions with the paths element populated.
sentences:
- |-
function getJavaScriptCallbackParameterListSimple(parameters) {
var result = []
parameters.forEach(function(parameter){
if (!parameter.out) return
result.push("/*" + getIdlType(parameter.type) + "*/ "+ parameter.name)
})
return result.join(", ")
}
- "public Color getBackground() {\r\n\t\tpredraw();\r\n\t\tFloatBuffer buffer = BufferUtils.createFloatBuffer(16);\r\n\t\tGL.glGetFloat(SGL.GL_COLOR_CLEAR_VALUE, buffer);\r\n\t\tpostdraw();\r\n\r\n\t\treturn new Color(buffer);\r\n\t}"
- >-
public static final PolygonOptions buildClosedArc(LatLong center,
LatLong start, LatLong end, ArcType arcType) {
MVCArray res = buildArcPoints(center, start, end);
if (ArcType.ROUND.equals(arcType)) {
res.push(center);
}
return new PolygonOptions().paths(res);
}
- source_sentence: |-
Read data from a spread sheet. Return the data in a dict with
column numbers as keys.
sheet: xlrd.sheet.Sheet instance
Ready for use.
startstops: list
Four StartStop objects defining the data to read. See
:func:`~channelpack.pullxl.prepread`.
usecols: str or seqence of ints or None
The columns to use, 0-based. 0 is the spread sheet column
"A". Can be given as a string also - 'C:E, H' for columns C, D,
E and H.
Values in the returned dict are numpy arrays. Types are set based on
the types in the spread sheet.
sentences:
- |-
public function handleScanNotify(callable $callback)
{
$notify = $this->getNotify();
if (!$notify->isValid()) {
throw new FaultException('Invalid request payloads.', 400);
}
$notify = $notify->getNotify();
try {
$prepayId = call_user_func_array($callback, [$notify->get('product_id'), $notify->get('openid'), $notify]);
$response = [
'return_code' => 'SUCCESS',
'appid' => $this->merchant->app_id,
'mch_id' => $this->merchant->merchant_id,
'nonce_str' => uniqid(),
'prepay_id' => strval($prepayId),
'result_code' => 'SUCCESS',
];
$response['sign'] = generate_sign($response, $this->merchant->key);
} catch (\Exception $e) {
$response = [
'return_code' => 'SUCCESS',
'return_msg' => $e->getCode(),
'result_code' => 'FAIL',
'err_code_des' => $e->getMessage(),
];
}
return new Response(XML::build($response));
}
- |-
def _sheet_asdict(sheet, startstops, usecols=None):
"""
"""
_, _, start, stop = startstops
usecols = _sanitize_usecols(usecols)
if usecols is not None:
iswithin = start.col <= min(usecols) and stop.col > max(usecols)
mess = 'Column in usecols outside defined data range, got '
assert iswithin, mess + str(usecols)
else: # usecols is None.
usecols = tuple(range(start.col, stop.col))
# cols = usecols or range(start.col, stop.col)
D = dict()
for c in usecols:
cells = sheet.col(c, start_rowx=start.row, end_rowx=stop.row)
types = set([cell.ctype for cell in cells])
# Replace empty values with nan if appropriate:
if (not types - NANABLE) and xlrd.XL_CELL_NUMBER in types:
D[c] = np.array([np.nan if cell.value == '' else cell.value
for cell in cells])
elif xlrd.XL_CELL_DATE in types:
dm = sheet.book.datemode
vals = []
for cell in cells:
if cell.ctype == xlrd.XL_CELL_DATE:
dtuple = xlrd.xldate_as_tuple(cell.value, dm)
vals.append(datetime.datetime(*dtuple))
elif cell.ctype in NONABLES:
vals.append(None)
else:
vals.append(cell.value)
D[c] = np.array(vals)
else:
vals = [None if cell.ctype in NONABLES else cell.value
for cell in cells]
D[c] = np.array(vals)
return D
- "func (o Option) RequiresOption(name string) bool {\n\tfor _, o := range o.Requires {\n\t\tif o == name {\n\t\t\treturn true\n\t\t}\n\t}\n\n\treturn false\n}"
- source_sentence: |-
// reBuild partially rebuilds a site given the filesystem events.
// It returns whetever the content source was changed.
// TODO(bep) clean up/rewrite this method.
sentences:
- "func WebPageImageResolver(doc *goquery.Document) ([]candidate, int) {\n\timgs := doc.Find(\"img\")\n\n\tvar candidates []candidate\n\tsignificantSurface := 320 * 200\n\tsignificantSurfaceCount := 0\n\tsrc := \"\"\n\timgs.Each(func(i int, tag *goquery.Selection) {\n\t\tvar surface int\n\t\tsrc = getImageSrc(tag)\n\t\tif src == \"\" {\n\t\t\treturn\n\t\t}\n\n\t\twidth, _ := tag.Attr(\"width\")\n\t\theight, _ := tag.Attr(\"height\")\n\t\tif width != \"\" {\n\t\t\tw, _ := strconv.Atoi(width)\n\t\t\tif height != \"\" {\n\t\t\t\th, _ := strconv.Atoi(height)\n\t\t\t\tsurface = w * h\n\t\t\t} else {\n\t\t\t\tsurface = w\n\t\t\t}\n\t\t} else {\n\t\t\tif height != \"\" {\n\t\t\t\tsurface, _ = strconv.Atoi(height)\n\t\t\t} else {\n\t\t\t\tsurface = 0\n\t\t\t}\n\t\t}\n\n\t\tif surface > significantSurface {\n\t\t\tsignificantSurfaceCount++\n\t\t}\n\n\t\ttagscore := score(tag)\n\t\tif tagscore >= 0 {\n\t\t\tc := candidate{\n\t\t\t\turl: src,\n\t\t\t\tsurface: surface,\n\t\t\t\tscore: score(tag),\n\t\t\t}\n\t\t\tcandidates = append(candidates, c)\n\t\t}\n\t})\n\n\tif len(candidates) == 0 {\n\t\treturn nil, 0\n\t}\n\n\treturn candidates, significantSurfaceCount\n\n}"
- "@SuppressWarnings(\"rawtypes\")\n\tpublic void open(Map conf, TopologyContext context,\n\t\t\tSpoutOutputCollector collector) {\n\t\tif(this.jmsProvider == null){\n\t\t\tthrow new IllegalStateException(\"JMS provider has not been set.\");\n\t\t}\n\t\tif(this.tupleProducer == null){\n\t\t\tthrow new IllegalStateException(\"JMS Tuple Producer has not been set.\");\n\t\t}\n\t\tInteger topologyTimeout = (Integer)conf.get(\"topology.message.timeout.secs\");\n\t\t// TODO fine a way to get the default timeout from storm, so we're not hard-coding to 30 seconds (it could change)\n\t\ttopologyTimeout = topologyTimeout == null ? 30 : topologyTimeout;\n\t\tif( (topologyTimeout.intValue() * 1000 )> this.recoveryPeriod){\n\t\t LOG.warn(\"*** WARNING *** : \" +\n\t\t \t\t\"Recovery period (\"+ this.recoveryPeriod + \" ms.) is less then the configured \" +\n\t\t \t\t\"'topology.message.timeout.secs' of \" + topologyTimeout + \n\t\t \t\t\" secs. This could lead to a message replay flood!\");\n\t\t}\n\t\tthis.queue = new LinkedBlockingQueue<Message>();\n\t\tthis.toCommit = new TreeSet<JmsMessageID>();\n this.pendingMessages = new HashMap<JmsMessageID, Message>();\n\t\tthis.collector = collector;\n\t\ttry {\n\t\t\tConnectionFactory cf = this.jmsProvider.connectionFactory();\n\t\t\tDestination dest = this.jmsProvider.destination();\n\t\t\tthis.connection = cf.createConnection();\n\t\t\tthis.session = connection.createSession(false,\n\t\t\t\t\tthis.jmsAcknowledgeMode);\n\t\t\tMessageConsumer consumer = session.createConsumer(dest);\n\t\t\tconsumer.setMessageListener(this);\n\t\t\tthis.connection.start();\n\t\t\tif (this.isDurableSubscription() && this.recoveryPeriod > 0){\n\t\t\t this.recoveryTimer = new Timer();\n\t\t\t this.recoveryTimer.scheduleAtFixedRate(new RecoveryTask(), 10, this.recoveryPeriod);\n\t\t\t}\n\t\t\t\n\t\t} catch (Exception e) {\n\t\t\tLOG.warn(\"Error creating JMS connection.\", e);\n\t\t}\n\n\t}"
- "func (s *Site) processPartial(events []fsnotify.Event) (whatChanged, error) {\n\n\tevents = s.filterFileEvents(events)\n\tevents = s.translateFileEvents(events)\n\n\ts.Log.DEBUG.Printf(\"Rebuild for events %q\", events)\n\n\th := s.h\n\n\t// First we need to determine what changed\n\n\tvar (\n\t\tsourceChanged = []fsnotify.Event{}\n\t\tsourceReallyChanged = []fsnotify.Event{}\n\t\tcontentFilesChanged []string\n\t\ttmplChanged = []fsnotify.Event{}\n\t\tdataChanged = []fsnotify.Event{}\n\t\ti18nChanged = []fsnotify.Event{}\n\t\tshortcodesChanged = make(map[string]bool)\n\t\tsourceFilesChanged = make(map[string]bool)\n\n\t\t// prevent spamming the log on changes\n\t\tlogger = helpers.NewDistinctFeedbackLogger()\n\t)\n\n\tcachePartitions := make([]string, len(events))\n\n\tfor i, ev := range events {\n\t\tcachePartitions[i] = resources.ResourceKeyPartition(ev.Name)\n\n\t\tif s.isContentDirEvent(ev) {\n\t\t\tlogger.Println(\"Source changed\", ev)\n\t\t\tsourceChanged = append(sourceChanged, ev)\n\t\t}\n\t\tif s.isLayoutDirEvent(ev) {\n\t\t\tlogger.Println(\"Template changed\", ev)\n\t\t\ttmplChanged = append(tmplChanged, ev)\n\n\t\t\tif strings.Contains(ev.Name, \"shortcodes\") {\n\t\t\t\tshortcode := filepath.Base(ev.Name)\n\t\t\t\tshortcode = strings.TrimSuffix(shortcode, filepath.Ext(shortcode))\n\t\t\t\tshortcodesChanged[shortcode] = true\n\t\t\t}\n\t\t}\n\t\tif s.isDataDirEvent(ev) {\n\t\t\tlogger.Println(\"Data changed\", ev)\n\t\t\tdataChanged = append(dataChanged, ev)\n\t\t}\n\t\tif s.isI18nEvent(ev) {\n\t\t\tlogger.Println(\"i18n changed\", ev)\n\t\t\ti18nChanged = append(dataChanged, ev)\n\t\t}\n\t}\n\n\t// These in memory resource caches will be rebuilt on demand.\n\tfor _, s := range s.h.Sites {\n\t\ts.ResourceSpec.ResourceCache.DeletePartitions(cachePartitions...)\n\t}\n\n\tif len(tmplChanged) > 0 || len(i18nChanged) > 0 {\n\t\tsites := s.h.Sites\n\t\tfirst := sites[0]\n\n\t\ts.h.init.Reset()\n\n\t\t// TOD(bep) globals clean\n\t\tif err := first.Deps.LoadResources(); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t\tfor i := 1; i < len(sites); i++ {\n\t\t\tsite := sites[i]\n\t\t\tvar err error\n\t\t\tdepsCfg := deps.DepsCfg{\n\t\t\t\tLanguage: site.language,\n\t\t\t\tMediaTypes: site.mediaTypesConfig,\n\t\t\t\tOutputFormats: site.outputFormatsConfig,\n\t\t\t}\n\t\t\tsite.Deps, err = first.Deps.ForLanguage(depsCfg, func(d *deps.Deps) error {\n\t\t\t\td.Site = &site.Info\n\t\t\t\treturn nil\n\t\t\t})\n\t\t\tif err != nil {\n\t\t\t\treturn whatChanged{}, err\n\t\t\t}\n\t\t}\n\t}\n\n\tif len(dataChanged) > 0 {\n\t\ts.h.init.data.Reset()\n\t}\n\n\tfor _, ev := range sourceChanged {\n\t\tremoved := false\n\n\t\tif ev.Op&fsnotify.Remove == fsnotify.Remove {\n\t\t\tremoved = true\n\t\t}\n\n\t\t// Some editors (Vim) sometimes issue only a Rename operation when writing an existing file\n\t\t// Sometimes a rename operation means that file has been renamed other times it means\n\t\t// it's been updated\n\t\tif ev.Op&fsnotify.Rename == fsnotify.Rename {\n\t\t\t// If the file is still on disk, it's only been updated, if it's not, it's been moved\n\t\t\tif ex, err := afero.Exists(s.Fs.Source, ev.Name); !ex || err != nil {\n\t\t\t\tremoved = true\n\t\t\t}\n\t\t}\n\t\tif removed && IsContentFile(ev.Name) {\n\t\t\th.removePageByFilename(ev.Name)\n\t\t}\n\n\t\tsourceReallyChanged = append(sourceReallyChanged, ev)\n\t\tsourceFilesChanged[ev.Name] = true\n\t}\n\n\tfor shortcode := range shortcodesChanged {\n\t\t// There are certain scenarios that, when a shortcode changes,\n\t\t// it isn't sufficient to just rerender the already parsed shortcode.\n\t\t// One example is if the user adds a new shortcode to the content file first,\n\t\t// and then creates the shortcode on the file system.\n\t\t// To handle these scenarios, we must do a full reprocessing of the\n\t\t// pages that keeps a reference to the changed shortcode.\n\t\tpagesWithShortcode := h.findPagesByShortcode(shortcode)\n\t\tfor _, p := range pagesWithShortcode {\n\t\t\tcontentFilesChanged = append(contentFilesChanged, p.File().Filename())\n\t\t}\n\t}\n\n\tif len(sourceReallyChanged) > 0 || len(contentFilesChanged) > 0 {\n\t\tvar filenamesChanged []string\n\t\tfor _, e := range sourceReallyChanged {\n\t\t\tfilenamesChanged = append(filenamesChanged, e.Name)\n\t\t}\n\t\tif len(contentFilesChanged) > 0 {\n\t\t\tfilenamesChanged = append(filenamesChanged, contentFilesChanged...)\n\t\t}\n\n\t\tfilenamesChanged = helpers.UniqueStrings(filenamesChanged)\n\n\t\tif err := s.readAndProcessContent(filenamesChanged...); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t}\n\n\tchanged := whatChanged{\n\t\tsource: len(sourceChanged) > 0 || len(shortcodesChanged) > 0,\n\t\tother: len(tmplChanged) > 0 || len(i18nChanged) > 0 || len(dataChanged) > 0,\n\t\tfiles: sourceFilesChanged,\n\t}\n\n\treturn changed, nil\n\n}"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on Shuu12121/CodeModernBERT-Finch-Pre
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Finch-Pre. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Shuu12121/CodeModernBERT-Finch-Pre
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'// reBuild partially rebuilds a site given the filesystem events.\n// It returns whetever the content source was changed.\n// TODO(bep) clean up/rewrite this method.',
'func (s *Site) processPartial(events []fsnotify.Event) (whatChanged, error) {\n\n\tevents = s.filterFileEvents(events)\n\tevents = s.translateFileEvents(events)\n\n\ts.Log.DEBUG.Printf("Rebuild for events %q", events)\n\n\th := s.h\n\n\t// First we need to determine what changed\n\n\tvar (\n\t\tsourceChanged = []fsnotify.Event{}\n\t\tsourceReallyChanged = []fsnotify.Event{}\n\t\tcontentFilesChanged []string\n\t\ttmplChanged = []fsnotify.Event{}\n\t\tdataChanged = []fsnotify.Event{}\n\t\ti18nChanged = []fsnotify.Event{}\n\t\tshortcodesChanged = make(map[string]bool)\n\t\tsourceFilesChanged = make(map[string]bool)\n\n\t\t// prevent spamming the log on changes\n\t\tlogger = helpers.NewDistinctFeedbackLogger()\n\t)\n\n\tcachePartitions := make([]string, len(events))\n\n\tfor i, ev := range events {\n\t\tcachePartitions[i] = resources.ResourceKeyPartition(ev.Name)\n\n\t\tif s.isContentDirEvent(ev) {\n\t\t\tlogger.Println("Source changed", ev)\n\t\t\tsourceChanged = append(sourceChanged, ev)\n\t\t}\n\t\tif s.isLayoutDirEvent(ev) {\n\t\t\tlogger.Println("Template changed", ev)\n\t\t\ttmplChanged = append(tmplChanged, ev)\n\n\t\t\tif strings.Contains(ev.Name, "shortcodes") {\n\t\t\t\tshortcode := filepath.Base(ev.Name)\n\t\t\t\tshortcode = strings.TrimSuffix(shortcode, filepath.Ext(shortcode))\n\t\t\t\tshortcodesChanged[shortcode] = true\n\t\t\t}\n\t\t}\n\t\tif s.isDataDirEvent(ev) {\n\t\t\tlogger.Println("Data changed", ev)\n\t\t\tdataChanged = append(dataChanged, ev)\n\t\t}\n\t\tif s.isI18nEvent(ev) {\n\t\t\tlogger.Println("i18n changed", ev)\n\t\t\ti18nChanged = append(dataChanged, ev)\n\t\t}\n\t}\n\n\t// These in memory resource caches will be rebuilt on demand.\n\tfor _, s := range s.h.Sites {\n\t\ts.ResourceSpec.ResourceCache.DeletePartitions(cachePartitions...)\n\t}\n\n\tif len(tmplChanged) > 0 || len(i18nChanged) > 0 {\n\t\tsites := s.h.Sites\n\t\tfirst := sites[0]\n\n\t\ts.h.init.Reset()\n\n\t\t// TOD(bep) globals clean\n\t\tif err := first.Deps.LoadResources(); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t\tfor i := 1; i < len(sites); i++ {\n\t\t\tsite := sites[i]\n\t\t\tvar err error\n\t\t\tdepsCfg := deps.DepsCfg{\n\t\t\t\tLanguage: site.language,\n\t\t\t\tMediaTypes: site.mediaTypesConfig,\n\t\t\t\tOutputFormats: site.outputFormatsConfig,\n\t\t\t}\n\t\t\tsite.Deps, err = first.Deps.ForLanguage(depsCfg, func(d *deps.Deps) error {\n\t\t\t\td.Site = &site.Info\n\t\t\t\treturn nil\n\t\t\t})\n\t\t\tif err != nil {\n\t\t\t\treturn whatChanged{}, err\n\t\t\t}\n\t\t}\n\t}\n\n\tif len(dataChanged) > 0 {\n\t\ts.h.init.data.Reset()\n\t}\n\n\tfor _, ev := range sourceChanged {\n\t\tremoved := false\n\n\t\tif ev.Op&fsnotify.Remove == fsnotify.Remove {\n\t\t\tremoved = true\n\t\t}\n\n\t\t// Some editors (Vim) sometimes issue only a Rename operation when writing an existing file\n\t\t// Sometimes a rename operation means that file has been renamed other times it means\n\t\t// it\'s been updated\n\t\tif ev.Op&fsnotify.Rename == fsnotify.Rename {\n\t\t\t// If the file is still on disk, it\'s only been updated, if it\'s not, it\'s been moved\n\t\t\tif ex, err := afero.Exists(s.Fs.Source, ev.Name); !ex || err != nil {\n\t\t\t\tremoved = true\n\t\t\t}\n\t\t}\n\t\tif removed && IsContentFile(ev.Name) {\n\t\t\th.removePageByFilename(ev.Name)\n\t\t}\n\n\t\tsourceReallyChanged = append(sourceReallyChanged, ev)\n\t\tsourceFilesChanged[ev.Name] = true\n\t}\n\n\tfor shortcode := range shortcodesChanged {\n\t\t// There are certain scenarios that, when a shortcode changes,\n\t\t// it isn\'t sufficient to just rerender the already parsed shortcode.\n\t\t// One example is if the user adds a new shortcode to the content file first,\n\t\t// and then creates the shortcode on the file system.\n\t\t// To handle these scenarios, we must do a full reprocessing of the\n\t\t// pages that keeps a reference to the changed shortcode.\n\t\tpagesWithShortcode := h.findPagesByShortcode(shortcode)\n\t\tfor _, p := range pagesWithShortcode {\n\t\t\tcontentFilesChanged = append(contentFilesChanged, p.File().Filename())\n\t\t}\n\t}\n\n\tif len(sourceReallyChanged) > 0 || len(contentFilesChanged) > 0 {\n\t\tvar filenamesChanged []string\n\t\tfor _, e := range sourceReallyChanged {\n\t\t\tfilenamesChanged = append(filenamesChanged, e.Name)\n\t\t}\n\t\tif len(contentFilesChanged) > 0 {\n\t\t\tfilenamesChanged = append(filenamesChanged, contentFilesChanged...)\n\t\t}\n\n\t\tfilenamesChanged = helpers.UniqueStrings(filenamesChanged)\n\n\t\tif err := s.readAndProcessContent(filenamesChanged...); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t}\n\n\tchanged := whatChanged{\n\t\tsource: len(sourceChanged) > 0 || len(shortcodesChanged) > 0,\n\t\tother: len(tmplChanged) > 0 || len(i18nChanged) > 0 || len(dataChanged) > 0,\n\t\tfiles: sourceFilesChanged,\n\t}\n\n\treturn changed, nil\n\n}',
'func WebPageImageResolver(doc *goquery.Document) ([]candidate, int) {\n\timgs := doc.Find("img")\n\n\tvar candidates []candidate\n\tsignificantSurface := 320 * 200\n\tsignificantSurfaceCount := 0\n\tsrc := ""\n\timgs.Each(func(i int, tag *goquery.Selection) {\n\t\tvar surface int\n\t\tsrc = getImageSrc(tag)\n\t\tif src == "" {\n\t\t\treturn\n\t\t}\n\n\t\twidth, _ := tag.Attr("width")\n\t\theight, _ := tag.Attr("height")\n\t\tif width != "" {\n\t\t\tw, _ := strconv.Atoi(width)\n\t\t\tif height != "" {\n\t\t\t\th, _ := strconv.Atoi(height)\n\t\t\t\tsurface = w * h\n\t\t\t} else {\n\t\t\t\tsurface = w\n\t\t\t}\n\t\t} else {\n\t\t\tif height != "" {\n\t\t\t\tsurface, _ = strconv.Atoi(height)\n\t\t\t} else {\n\t\t\t\tsurface = 0\n\t\t\t}\n\t\t}\n\n\t\tif surface > significantSurface {\n\t\t\tsignificantSurfaceCount++\n\t\t}\n\n\t\ttagscore := score(tag)\n\t\tif tagscore >= 0 {\n\t\t\tc := candidate{\n\t\t\t\turl: src,\n\t\t\t\tsurface: surface,\n\t\t\t\tscore: score(tag),\n\t\t\t}\n\t\t\tcandidates = append(candidates, c)\n\t\t}\n\t})\n\n\tif len(candidates) == 0 {\n\t\treturn nil, 0\n\t}\n\n\treturn candidates, significantSurfaceCount\n\n}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5930, 0.3537],
# [0.5930, 1.0000, 0.3285],
# [0.3537, 0.3285, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 58,800 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 55.73 tokens
- max: 1024 tokens
- min: 28 tokens
- mean: 179.65 tokens
- max: 1024 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label // CASNext is a non-callback, loop-based version of CAS method.
//
// Usage is like this:
//
// var state memcached.CASState
// for client.CASNext(vb, key, exp, &state) {
// state.Value = some_mutation(state.Value)
// }
// if state.Err != nil { ... }func (c *Client) CASNext(vb uint16, k string, exp int, state *CASState) bool {
if state.initialized {
if !state.Exists {
// Adding a new key:
if state.Value == nil {
state.Cas = 0
return false // no-op (delete of non-existent value)
}
state.resp, state.Err = c.Add(vb, k, 0, exp, state.Value)
} else {
// Updating / deleting a key:
req := &gomemcached.MCRequest{
Opcode: gomemcached.DELETE,
VBucket: vb,
Key: []byte(k),
Cas: state.Cas}
if state.Value != nil {
req.Opcode = gomemcached.SET
req.Opaque = 0
req.Extras = []byte{0, 0, 0, 0, 0, 0, 0, 0}
req.Body = state.Value
flags := 0
exp := 0 // ??? Should we use initialexp here instead?
binary.BigEndian.PutUint64(req.Extras, uint64(flags)<<32uint64(exp))
}
state.resp, state.Err = c.Send(req)
}
// If the response status is KEY_EEXISTS or NOT_STORED there's a conflict and we'll need to
// get the new value (below). Otherwise, we're done (either ...// RestoreResourcePools restores a bulk of resource pools, usually from a backup.func (f *Facade) RestoreResourcePools(ctx datastore.Context, pools []pool.ResourcePool) error {
defer ctx.Metrics().Stop(ctx.Metrics().Start("Facade.RestoreResourcePools"))
// Do not DFSLock here, ControlPlaneDao does that
var alog audit.Logger
for _, pool := range pools {
alog = f.auditLogger.Message(ctx, "Adding ResourcePool").Action(audit.Add).Entity(&pool)
pool.DatabaseVersion = 0
if err := f.addResourcePool(ctx, &pool); err != nil {
if err == ErrPoolExists {
if err := f.updateResourcePool(ctx, &pool); err != nil {
glog.Errorf("Could not restore resource pool %s via update: %s", pool.ID, err)
return alog.Error(err)
}
} else {
glog.Errorf("Could not restore resource pool %s via add: %s", pool.ID, err)
return alog.Error(err)
}
}
alog.Succeeded()
}
return nil
}1.0// run starts a goroutine to handle client connects and broadcast events.func (s *Streamer) run() {
go func() {
for {
select {
case cl := <-s.connecting:
s.clients[cl] = true
case cl := <-s.disconnecting:
delete(s.clients, cl)
case event := <-s.event:
for cl := range s.clients {
// TODO: non-blocking broadcast
//select {
//case cl <- event: // Try to send event to client
//default:
// fmt.Println("Channel full. Discarding value")
//}
cl <- event
}
}
}
}()
}1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 200per_device_eval_batch_size: 200fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 200per_device_eval_batch_size: 200per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 1.7007 | 500 | 0.3417 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.0+cu128
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}