Improve model card: Add metadata, paper link, and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,32 +1,70 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
pipeline_tag: time-series-forecasting
|
| 4 |
+
library_name: pytorch
|
| 5 |
+
tags:
|
| 6 |
+
- time-series
|
| 7 |
+
- anomaly-detection
|
| 8 |
+
- LLM
|
| 9 |
+
datasets:
|
| 10 |
+
- NIPS-TS-SWAN
|
| 11 |
+
- MSL
|
| 12 |
+
- SMD
|
| 13 |
+
- SWaT
|
| 14 |
+
- PSM
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# TriP-LLM
|
| 18 |
+
|
| 19 |
+
This is the official checkpoints release for the **TriP-LLM**, a novel framework for unsupervised anomaly detection in multivariate time-series data using pretrained Large Language Models (LLMs).
|
| 20 |
+
|
| 21 |
+
The model was presented in the paper: [TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection](https://huggingface.co/papers/2508.00047)
|
| 22 |
+
|
| 23 |
+
## Model Description
|
| 24 |
+
- **Name**: TriP-LLM
|
| 25 |
+
- **Task**: Time-Series Anomaly Detection
|
| 26 |
+
- **Framework**: PyTorch
|
| 27 |
+
- **Repository**: [GitHub โ YYZStart/TriP-LLM](https://github.com/YYZStart/TriP-LLM)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
## Usage
|
| 31 |
+
|
| 32 |
+
To get started with TriP-LLM, you can follow the installation and usage instructions from the [GitHub repository](https://github.com/YYZStart/TriP-LLM).
|
| 33 |
+
|
| 34 |
+
### Installation
|
| 35 |
+
|
| 36 |
+
We conducted our experiments using PyTorch 2.4.1, Python 3.11 and CUDA 12.4.
|
| 37 |
+
```bash
|
| 38 |
+
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
|
| 39 |
+
```
|
| 40 |
+
To install the required dependencies and set up the environment, run the following commands:
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
git clone https://github.com/YYZStart/TriP-LLM.git
|
| 44 |
+
cd TriP-LLM
|
| 45 |
+
pip install -r requirements.txt
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Reproduce Experiments
|
| 49 |
+
|
| 50 |
+
You can reproduce our main experiments with:
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
python main.py
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## ๐ Citation
|
| 57 |
+
|
| 58 |
+
If you find this repository useful for your research, please cite our paper:
|
| 59 |
+
|
| 60 |
+
```bibtex
|
| 61 |
+
@misc{TriPLLM,
|
| 62 |
+
title={TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection},
|
| 63 |
+
author={Yuan-Cheng Yu and Yen-Chieh Ouyang and Chun-An Lin},
|
| 64 |
+
year={2025},
|
| 65 |
+
eprint={2508.00047},
|
| 66 |
+
archivePrefix={arXiv},
|
| 67 |
+
primaryClass={cs.LG},
|
| 68 |
+
url={https://arxiv.org/abs/2508.00047},
|
| 69 |
+
}
|
| 70 |
```
|