Improve model card: Add metadata, paper link, and usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +69 -31
README.md CHANGED
@@ -1,32 +1,70 @@
1
- # TriP-LLM
2
-
3
- This is the official checkpoints release for the **TriP-LLM**, a novel framework for unsupervised anomaly detection in multivariate time-series data using pretrained Large Language Models (LLMs).
4
-
5
- ## Model Description
6
- - **Name**: TriP-LLM
7
- - **Task**: Time-Series Anomaly Detection
8
- - **Framework**: PyTorch
9
- - **Repository**: [GitHub โ€“ YYZStart/TriP-LLM](https://github.com/YYZStart/TriP-LLM)
10
-
11
-
12
- ## Usage
13
-
14
- Please refer to our [GitHub repository](https://github.com/YYZStart/TriP-LLM)
15
- for model definitions, training code, and usage examples.
16
-
17
-
18
- ## ๐Ÿ“Ž Citation
19
-
20
- If you find this repository useful for your research, please cite our paper:
21
-
22
- ```bibtex
23
- @misc{TriPLLM,
24
- title={TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection},
25
- author={Yuan-Cheng Yu and Yen-Chieh Ouyang and Chun-An Lin},
26
- year={2025},
27
- eprint={2508.00047},
28
- archivePrefix={arXiv},
29
- primaryClass={cs.LG},
30
- url={https://arxiv.org/abs/2508.00047},
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ```
 
1
+ ---
2
+ license: other
3
+ pipeline_tag: time-series-forecasting
4
+ library_name: pytorch
5
+ tags:
6
+ - time-series
7
+ - anomaly-detection
8
+ - LLM
9
+ datasets:
10
+ - NIPS-TS-SWAN
11
+ - MSL
12
+ - SMD
13
+ - SWaT
14
+ - PSM
15
+ ---
16
+
17
+ # TriP-LLM
18
+
19
+ This is the official checkpoints release for the **TriP-LLM**, a novel framework for unsupervised anomaly detection in multivariate time-series data using pretrained Large Language Models (LLMs).
20
+
21
+ The model was presented in the paper: [TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection](https://huggingface.co/papers/2508.00047)
22
+
23
+ ## Model Description
24
+ - **Name**: TriP-LLM
25
+ - **Task**: Time-Series Anomaly Detection
26
+ - **Framework**: PyTorch
27
+ - **Repository**: [GitHub โ€“ YYZStart/TriP-LLM](https://github.com/YYZStart/TriP-LLM)
28
+
29
+
30
+ ## Usage
31
+
32
+ To get started with TriP-LLM, you can follow the installation and usage instructions from the [GitHub repository](https://github.com/YYZStart/TriP-LLM).
33
+
34
+ ### Installation
35
+
36
+ We conducted our experiments using PyTorch 2.4.1, Python 3.11 and CUDA 12.4.
37
+ ```bash
38
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
39
+ ```
40
+ To install the required dependencies and set up the environment, run the following commands:
41
+
42
+ ```bash
43
+ git clone https://github.com/YYZStart/TriP-LLM.git
44
+ cd TriP-LLM
45
+ pip install -r requirements.txt
46
+ ```
47
+
48
+ ### Reproduce Experiments
49
+
50
+ You can reproduce our main experiments with:
51
+
52
+ ```bash
53
+ python main.py
54
+ ```
55
+
56
+ ## ๐Ÿ“Ž Citation
57
+
58
+ If you find this repository useful for your research, please cite our paper:
59
+
60
+ ```bibtex
61
+ @misc{TriPLLM,
62
+ title={TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection},
63
+ author={Yuan-Cheng Yu and Yen-Chieh Ouyang and Chun-An Lin},
64
+ year={2025},
65
+ eprint={2508.00047},
66
+ archivePrefix={arXiv},
67
+ primaryClass={cs.LG},
68
+ url={https://arxiv.org/abs/2508.00047},
69
+ }
70
  ```