catalystsec/MiniMax-M2-4bit-DWQ

This model was quantized to 4-bit using DWQ with mlx-lm version 0.28.4.

Parameter Value
DWQ learning rate 3e-7
Batch size 1
Dataset allenai/tulu-3-sft-mixture
Initial validation loss 0.069
Final validation loss 0.047
Relative KL reduction ≈32 %
Tokens processed ≈1.09 M
Training loss curve

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("catalystsec/MiniMax-M2-4bit-DWQ")
prompt = "hello"

if tokenizer.chat_template is not None:
    prompt = tokenizer.apply_chat_template(
        [{"role": "user", "content": prompt}],
        add_generation_prompt=True,
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
print(response)
Downloads last month
590
Safetensors
Model size
229B params
Tensor type
BF16
·
U32
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for catalystsec/MiniMax-M2-4bit-DWQ

Quantized
(43)
this model