9df2bb8ec997569d492ecc7a19f37d0d
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll02-spanish on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6429
- Data Size: 1.0
- Epoch Runtime: 24.2241
- Accuracy: 0.6651
- F1 Macro: 0.3994
- Rouge1: 0.6657
- Rouge2: 0.0
- Rougel: 0.6645
- Rougelsum: 0.6651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6429 | 0 | 2.9684 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 1 | 114 | 0.6521 | 0.0078 | 4.4424 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.6595 | 0.0156 | 4.1890 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6510 | 0.0312 | 5.1883 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0225 | 4 | 456 | 0.6409 | 0.0625 | 6.5716 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0225 | 5 | 570 | 0.6416 | 0.125 | 7.6501 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0225 | 6 | 684 | 0.6930 | 0.25 | 11.4039 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.1636 | 7 | 798 | 0.6372 | 0.5 | 15.4502 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6487 | 8.0 | 912 | 0.6420 | 1.0 | 23.4243 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6472 | 9.0 | 1026 | 0.6366 | 1.0 | 22.9335 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6325 | 10.0 | 1140 | 0.6381 | 1.0 | 22.9975 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6493 | 11.0 | 1254 | 0.6388 | 1.0 | 22.6450 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6449 | 12.0 | 1368 | 0.6490 | 1.0 | 23.4097 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6473 | 13.0 | 1482 | 0.6429 | 1.0 | 24.2241 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 1