metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
Item 3—Legal Proceedings See discussion of Legal Proceedings in Note 10 to
the consolidated financial statements included in Item 8 of this Report.
sentences:
- >-
How much did the company's finance lease obligations total as of
December 31, 2023?
- What do Note 10 and Item 8 of the report encompass?
- >-
What was the basic earnings per common share attributable to Comcast
Corporation shareholders in 2023?
- source_sentence: >-
Our quarterly Insurance segment earnings and operating cash flows are
impacted by the Medicare Part D benefit Grant program, the changing
membership composition, and the multistage plan period starting annually
on January 1. These plan designs generally result in us sharing a greater
portion of the responsibility for total prescription drug costs in the
early stages and less in the latter stages.
sentences:
- >-
What are the two main categories into which Ford Motor Company
classifies its costs and expenses, excluding those related to Ford
Credit?
- >-
How does the benefit design of Medicare Part D impact the quarterly
insurance segment earnings and operating cash flows?
- >-
What basis is used to record HTM investment securities in Schwab's
financial statements?
- source_sentence: >-
Operating Profit in the Wizards of the Coast and Digital Gaming segment
decreased 2% to $538.3 million.
sentences:
- >-
How much did the Wizards of the Coast and Digital Gaming segment's
operating profit change in 2022?
- >-
What factors are considered in evaluating the lifetime losses for most
loans and receivables?
- >-
How did the loss on certain U.S. affiliates impact the Company's
effective tax rate in the fiscal fourth quarter of 2021?
- source_sentence: >-
In 2023, the net earnings of Johnson & Johnson were $35,153 million. The
company also registered cash dividends paid amounting to $11,770 million
for the year, priced at $4.70 per share.
sentences:
- What was the postpaid churn rate for AT&T Inc. in 2023?
- >-
What was the GAAP net revenue for the fiscal year ended October 31,
2023?
- What were the total net earnings of Johnson & Johnson in the year 2023?
- source_sentence: >-
During fiscal 2022, GameStop Corp increased its valuation allowances by
approximately $70.2 million in various jurisdictions.
sentences:
- >-
How much did GameStop Corp's valuation allowances increase during fiscal
2022?
- How does Gilead ensure an inclusive and diverse workforce?
- >-
What factors are considered in determining the estimated future warranty
costs for connected fitness and Precor branded fitness products?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7185714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7185714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.091
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7185714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8137967516958747
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7830442176870747
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7866777593387027
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8123538841130576
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7798667800453513
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7831580648041446
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2761904761904762
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8043112987059042
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7721706349206346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7759026470022171
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.79087795854059
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7568854875283447
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7608935817550728
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7757142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8128571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8671428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25857142857142856
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16257142857142853
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0867142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7757142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8128571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8671428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7616045249840884
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7281247165532877
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7330922421864847
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cristuf/bge-base-financial-matryoshka")
sentences = [
'During fiscal 2022, GameStop Corp increased its valuation allowances by approximately $70.2 million in various jurisdictions.',
"How much did GameStop Corp's valuation allowances increase during fiscal 2022?",
'How does Gilead ensure an inclusive and diverse workforce?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7186 |
| cosine_accuracy@3 |
0.83 |
| cosine_accuracy@5 |
0.8714 |
| cosine_accuracy@10 |
0.91 |
| cosine_precision@1 |
0.7186 |
| cosine_precision@3 |
0.2767 |
| cosine_precision@5 |
0.1743 |
| cosine_precision@10 |
0.091 |
| cosine_recall@1 |
0.7186 |
| cosine_recall@3 |
0.83 |
| cosine_recall@5 |
0.8714 |
| cosine_recall@10 |
0.91 |
| cosine_ndcg@10 |
0.8138 |
| cosine_mrr@10 |
0.783 |
| cosine_map@100 |
0.7867 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7114 |
| cosine_accuracy@3 |
0.8314 |
| cosine_accuracy@5 |
0.8729 |
| cosine_accuracy@10 |
0.9143 |
| cosine_precision@1 |
0.7114 |
| cosine_precision@3 |
0.2771 |
| cosine_precision@5 |
0.1746 |
| cosine_precision@10 |
0.0914 |
| cosine_recall@1 |
0.7114 |
| cosine_recall@3 |
0.8314 |
| cosine_recall@5 |
0.8729 |
| cosine_recall@10 |
0.9143 |
| cosine_ndcg@10 |
0.8124 |
| cosine_mrr@10 |
0.7799 |
| cosine_map@100 |
0.7832 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7 |
| cosine_accuracy@3 |
0.8286 |
| cosine_accuracy@5 |
0.8614 |
| cosine_accuracy@10 |
0.9043 |
| cosine_precision@1 |
0.7 |
| cosine_precision@3 |
0.2762 |
| cosine_precision@5 |
0.1723 |
| cosine_precision@10 |
0.0904 |
| cosine_recall@1 |
0.7 |
| cosine_recall@3 |
0.8286 |
| cosine_recall@5 |
0.8614 |
| cosine_recall@10 |
0.9043 |
| cosine_ndcg@10 |
0.8043 |
| cosine_mrr@10 |
0.7722 |
| cosine_map@100 |
0.7759 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6857 |
| cosine_accuracy@3 |
0.8071 |
| cosine_accuracy@5 |
0.8571 |
| cosine_accuracy@10 |
0.8971 |
| cosine_precision@1 |
0.6857 |
| cosine_precision@3 |
0.269 |
| cosine_precision@5 |
0.1714 |
| cosine_precision@10 |
0.0897 |
| cosine_recall@1 |
0.6857 |
| cosine_recall@3 |
0.8071 |
| cosine_recall@5 |
0.8571 |
| cosine_recall@10 |
0.8971 |
| cosine_ndcg@10 |
0.7909 |
| cosine_mrr@10 |
0.7569 |
| cosine_map@100 |
0.7609 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.66 |
| cosine_accuracy@3 |
0.7757 |
| cosine_accuracy@5 |
0.8129 |
| cosine_accuracy@10 |
0.8671 |
| cosine_precision@1 |
0.66 |
| cosine_precision@3 |
0.2586 |
| cosine_precision@5 |
0.1626 |
| cosine_precision@10 |
0.0867 |
| cosine_recall@1 |
0.66 |
| cosine_recall@3 |
0.7757 |
| cosine_recall@5 |
0.8129 |
| cosine_recall@10 |
0.8671 |
| cosine_ndcg@10 |
0.7616 |
| cosine_mrr@10 |
0.7281 |
| cosine_map@100 |
0.7331 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 46.36 tokens
- max: 439 tokens
|
- min: 9 tokens
- mean: 20.41 tokens
- max: 51 tokens
|
- Samples:
| positive |
anchor |
Japan's revenue for the year 2023 reached 2,367.0 million. |
What was the revenue attributed to Japan in the year 2023? |
Our four reportable segments are: •the Data Center segment, which primarily includes server CPUs, GPUs, APUs, DPUs, FPGAs, SmartNICs, AI accelerators and Adaptive SoC products for data centers; •the Client segment, which primarily includes CPUs, APUs, and chipsets for desktop, notebook and handheld personal computers; •the Gaming segment, which primarily includes discrete GPUs, semi-custom SoC products and development services; and •the Embedded segment, which primarily includes embedded CPUs, GPUs, APUs, FPGAs, SOMs, and Adaptive SoC products. |
What are the different segments that AMD reports financially? |
For detailed information about the company's legal proceedings, see Note 4 to the consolidated financial statements, included under the caption 'Contingencies' in the Annual Report on Form 10-K. |
Where can detailed information about the company's legal proceedings be found in its financial statements? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.8122 |
10 |
1.5267 |
- |
- |
- |
- |
- |
| 0.9746 |
12 |
- |
0.7446 |
0.7639 |
0.7765 |
0.7039 |
0.7725 |
| 1.6244 |
20 |
0.6742 |
- |
- |
- |
- |
- |
| 1.9492 |
24 |
- |
0.7606 |
0.7795 |
0.7828 |
0.7297 |
0.7839 |
| 2.4365 |
30 |
0.4469 |
- |
- |
- |
- |
- |
| 2.9239 |
36 |
- |
0.7643 |
0.7758 |
0.7834 |
0.7332 |
0.7845 |
| 3.2487 |
40 |
0.3712 |
- |
- |
- |
- |
- |
| 3.8985 |
48 |
- |
0.7609 |
0.7759 |
0.7832 |
0.7331 |
0.7867 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}