Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
256
256
label
class label
3 classes
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
End of preview. Expand in Data Studio

Cats, Dogs, and Snakes Dataset

Dataset Overview

The dataset contains images of three animal classes: Cats, Dogs, and Snakes. It is balanced and cleaned, designed for supervised image classification tasks.

Class Number of Images Description
Cats 1,000 Includes multiple breeds and poses
Dogs 1,000 Covers various breeds and backgrounds
Snakes 1,000 Includes multiple species and natural settings

Total Images: 3,000

Image Properties:

  • Resolution: 224×224 pixels (resized for consistency)
  • Color Mode: RGB
  • Format: JPEG/PNG
  • Cleaned: Duplicate, blurry, and irrelevant images removed

Data Split Recommendation

Set Percentage Number of Images
Training 70% 2,100
Validation 15% 450
Test 15% 450

Preprocessing

Images in the dataset have been standardized to support machine learning pipelines:

  1. Resizing to 224×224 pixels.
  2. Normalization of pixel values to [0,1] or mean subtraction for deep learning frameworks.
  3. Label encoding: Integer encoding (0 = Cat, 1 = Dog, 2 = Snake) or one-hot encoding for model training.

Example: Loading and Using the Dataset (Python)

import os
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Path to dataset
dataset_path = "path/to/dataset"

# ImageDataGenerator for preprocessing
datagen = ImageDataGenerator(
    rescale=1./255,
    validation_split=0.15  # 15% for validation
)

# Load training data
train_generator = datagen.flow_from_directory(
    dataset_path,
    target_size=(224, 224),
    batch_size=32,
    class_mode='categorical',
    subset='training',
    shuffle=True
)

# Load validation data
validation_generator = datagen.flow_from_directory(
    dataset_path,
    target_size=(224, 224),
    batch_size=32,
    class_mode='categorical',
    subset='validation',
    shuffle=False
)

# Example: Iterate over one batch
images, labels = next(train_generator)
print(images.shape, labels.shape)  # (32, 224, 224, 3) (32, 3)

Key Features

  • Balanced: Equal number of samples per class reduces bias.
  • Cleaned: High-quality, relevant images improve model performance.
  • Diverse: Covers multiple breeds, species, and environments to ensure generalization.
  • Ready for ML: Preprocessed and easily integrated into popular deep learning frameworks.
Downloads last month
3

Models trained or fine-tuned on AIOmarRehan/AnimalsDataset