image
imagewidth (px) 168
640
| label
class label 38
classes |
|---|---|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
0yaleB01
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
|
1yaleB02
|
Here is a fully polished, clean, professional README.md — perfectly structured for Hugging Face. All sections are formatted properly, with correct Markdown headings, lists, tables, code blocks, and directory trees.
Cropped Yale Face Dataset (Grayscale)
A clean and standardized version of the Cropped Yale Facial Image Dataset, containing grayscale 168×192 cropped facial images captured under controlled illumination conditions. This dataset is widely used for:
- Face recognition
- Illumination-invariant modeling
- Classical computer vision research
- Autoencoders & generative models
Overview
The Cropped Yale Face Dataset is derived from the original Yale Face Database B.
This version contains:
- 28 human subjects
- Frontal face images only
- Strong illumination variations from many light source directions
- Aligned, cropped, grayscale images
Ideal for:
- Face recognition experiments
- Light normalization research
- PCA/LDA classical ML tasks
- Autoencoders, GANs, and image reconstruction tasks
Dataset Structure
dataset/
│
├── yaleB01/
│ ├── yaleB01_P00A+000E+00.pgm
│ ├── yaleB01_P00A+000E+01.pgm
│ └── ...
│
├── yaleB02/
│ ├── yaleB02_P00A+000E+00.pgm
│ ├── yaleB02_P00A+000E+01.pgm
│ └── ...
│
└── ...
File Format
| Property | Value |
|---|---|
| Image size | 168 × 192 |
| Color mode | Grayscale |
| File type | .png / .jpg |
| Subjects | 28 |
| Images per subject | ~64 |
Example Usage
Load Images with Python (Hugging Face Datasets)
from datasets import load_dataset
import matplotlib.pyplot as plt
ds = load_dataset("YOUR_USERNAME/cropped-yale")
sample = ds["train"][0]["image"]
plt.imshow(sample, cmap="gray")
plt.axis("off")
TensorFlow Preprocessing Example
import tensorflow as tf
def preprocess(img):
img = tf.image.resize(img, (192, 168))
img = tf.cast(img, tf.float32) / 255.0
return img
PyTorch Example
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize((192, 168)),
transforms.ToTensor()
])
Applications
Face Recognition
Train classical or modern models:
- Eigenfaces
- Fisherfaces
- SVM classifiers
- CNN-based architectures
Illumination-Invariant Face Analysis
Evaluate model robustness under extreme lighting shifts.
Dimensionality Reduction
Perfect for:
- PCA
- LDA
- Linear subspace modeling
Autoencoders / GANs
Great for:
- Reconstruction
- Denoising
- Generative modeling
Sample Images
(Optional — you may add examples here)
Download / Use
If you're viewing this on Hugging Face, simply click:
Use dataset → Load in Python
Or install via:
load_dataset("YOUR_USERNAME/cropped-yale")
License & Citation
This dataset is derived from:
Yale Face Database B and the Cropped Yale Dataset, prepared by Yale University researchers.
If you use this dataset in academic work, please cite:
Georghiades, A. S., Belhumeur, P. N., & Kriegman, D. J. From Few Pixels to the Illumination Cone Model. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2001.
All images are provided for research and academic purposes only.
Acknowledgements
Special thanks to Yale University for releasing the original dataset and supporting reproducible computer vision research.
If you want, I can also:
Add Hugging Face metadata tags Add badges (downloads, version, license) Add a "Dataset Card" following HF’s official template
Just tell me!
- Downloads last month
- 17