Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
168
640
label
class label
38 classes
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
0yaleB01
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
1yaleB02
End of preview. Expand in Data Studio

Here is a fully polished, clean, professional README.md — perfectly structured for Hugging Face. All sections are formatted properly, with correct Markdown headings, lists, tables, code blocks, and directory trees.


Cropped Yale Face Dataset (Grayscale)

A clean and standardized version of the Cropped Yale Facial Image Dataset, containing grayscale 168×192 cropped facial images captured under controlled illumination conditions. This dataset is widely used for:

  • Face recognition
  • Illumination-invariant modeling
  • Classical computer vision research
  • Autoencoders & generative models

Overview

The Cropped Yale Face Dataset is derived from the original Yale Face Database B.

This version contains:

  • 28 human subjects
  • Frontal face images only
  • Strong illumination variations from many light source directions
  • Aligned, cropped, grayscale images

Ideal for:

  • Face recognition experiments
  • Light normalization research
  • PCA/LDA classical ML tasks
  • Autoencoders, GANs, and image reconstruction tasks

Dataset Structure

dataset/
│
├── yaleB01/
│   ├── yaleB01_P00A+000E+00.pgm
│   ├── yaleB01_P00A+000E+01.pgm
│   └── ...
│
├── yaleB02/
│   ├── yaleB02_P00A+000E+00.pgm
│   ├── yaleB02_P00A+000E+01.pgm
│   └── ...
│
└── ...

File Format

Property Value
Image size 168 × 192
Color mode Grayscale
File type .png / .jpg
Subjects 28
Images per subject ~64

Example Usage

Load Images with Python (Hugging Face Datasets)

from datasets import load_dataset
import matplotlib.pyplot as plt

ds = load_dataset("YOUR_USERNAME/cropped-yale")

sample = ds["train"][0]["image"]
plt.imshow(sample, cmap="gray")
plt.axis("off")

TensorFlow Preprocessing Example

import tensorflow as tf

def preprocess(img):
    img = tf.image.resize(img, (192, 168))
    img = tf.cast(img, tf.float32) / 255.0
    return img

PyTorch Example

from torchvision import transforms

transform = transforms.Compose([
    transforms.Resize((192, 168)),
    transforms.ToTensor()
])

Applications

Face Recognition

Train classical or modern models:

  • Eigenfaces
  • Fisherfaces
  • SVM classifiers
  • CNN-based architectures

Illumination-Invariant Face Analysis

Evaluate model robustness under extreme lighting shifts.

Dimensionality Reduction

Perfect for:

  • PCA
  • LDA
  • Linear subspace modeling

Autoencoders / GANs

Great for:

  • Reconstruction
  • Denoising
  • Generative modeling

Sample Images

(Optional — you may add examples here)


Download / Use

If you're viewing this on Hugging Face, simply click:

Use dataset → Load in Python

Or install via:

load_dataset("YOUR_USERNAME/cropped-yale")

License & Citation

This dataset is derived from:

Yale Face Database B and the Cropped Yale Dataset, prepared by Yale University researchers.

If you use this dataset in academic work, please cite:

Georghiades, A. S., Belhumeur, P. N., & Kriegman, D. J. From Few Pixels to the Illumination Cone Model. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2001.

All images are provided for research and academic purposes only.


Acknowledgements

Special thanks to Yale University for releasing the original dataset and supporting reproducible computer vision research.


If you want, I can also:

Add Hugging Face metadata tags Add badges (downloads, version, license) Add a "Dataset Card" following HF’s official template

Just tell me!

Downloads last month
17

Models trained or fine-tuned on AIOmarRehan/Cropped_Yale_Faces

Space using AIOmarRehan/Cropped_Yale_Faces 1