Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
audio
audioduration (s)
3.64
7.24
label
class label
13 classes
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
0Baby cry
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
1Chainsaw
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
2Clock tick
End of preview. Expand in Data Studio

Audio Dataset

> This raw audio dataset was prepared using my notebook > “Building an Audio Classification Pipeline with DL,” available on my profile. > It forms the foundation for all subsequent preprocessing and spectrogram generation.


Dataset Summary

Property Description
Number of Classes 13 categories
Audio Files per Class ~40 raw recordings
Duration ~5 seconds each
Channels Mono (after processing)
Sampling Rate (final) 16 kHz

Processing Overview

The raw audio underwent a compact but essential pipeline:

  1. Data Loading & Inspection Imported all recordings and validated metadata (duration, sample rate, SNR).

  2. Cleaning & Normalization

    • Removed corrupted/silent files
    • Normalized amplitude
    • Trimmed leading/trailing silence
    • Applied noise reduction
  3. Standardization

    • Converted to mono
    • Resampled to 16,000 Hz
    • Forced each clip to a uniform 5-second length
  4. Augmentation (for balance & variability)

    • Pitch shift
    • Time stretch
    • Noise injection
    • Time shift

Final Technical Description

> “The raw dataset consists of 13 audio classes with approximately 40 five-second recordings each. All clips were cleaned, normalized, noise-reduced, resampled, and standardized through a custom pipeline implemented in the notebook ‘Building an Audio Classification Pipeline with DL.’ This processed audio served as the basis for generating the Mel-spectrogram dataset used for model training.”

Downloads last month
30

Space using AIOmarRehan/General_Audio_Dataset 1