Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'test' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
data: list<item: struct<uid: string, label: string, modelId: string, children: list<item: null>, objectId: int64, segments: struct<obb: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, partId: int64, fixScale: bool, segments: list<item: int64>, fixRotate: bool, obbAligned: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, fixPosition: bool, dominantNormal: list<item: double>>, hierarchy: int64, isInGroup: bool, labelType: string, attributes: struct<tags: list<item: string>, attributes: struct<occlusion: string, incompleteness: string, orientation: string>>>>
stats: struct<labelCount: int64, totalSegments: int64, totalVertices: int64, percentComplete: double, annotatedSegments: int64, annotatedVertices: int64, unannotatedSegments: int64, unannotatedVertices: int64>
comment: string
confirm: bool
skipped: bool
attributes: struct<tags: list<item: null>, attributes: struct<>>
mesh_quality: list<item: null>
relabel_reason: string
skipped_reason: string
label_version: string
vs
data: list<item: struct<uid: string, label: string, modelId: string, children: list<item: null>, objectId: int64, segments: struct<obb: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, partId: int64, fixScale: bool, segments: list<item: int64>, fixRotate: bool, obbAligned: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, fixPosition: bool, dominantNormal: list<item: double>>, hierarchy: int64, isInGroup: bool, labelType: string, attributes: struct<tags: list<item: string>, attributes: struct<occlusion: string, orientation: string, incompleteness: string>>>>
stats: struct<labelCount: int64, totalSegments: int64, totalVertices: int64, percentComplete: double, annotatedSegments: int64, annotatedVertices: int64, unannotatedSegments: int64, unannotatedVertices: int64>
comment: string
confirm: bool
skipped: bool
attributes: struct<tags: list<item: null>, attributes: struct<>>
mesh_quality: list<item: null>
skipped_reason: string
label_version: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              data: list<item: struct<uid: string, label: string, modelId: string, children: list<item: null>, objectId: int64, segments: struct<obb: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, partId: int64, fixScale: bool, segments: list<item: int64>, fixRotate: bool, obbAligned: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, fixPosition: bool, dominantNormal: list<item: double>>, hierarchy: int64, isInGroup: bool, labelType: string, attributes: struct<tags: list<item: string>, attributes: struct<occlusion: string, incompleteness: string, orientation: string>>>>
              stats: struct<labelCount: int64, totalSegments: int64, totalVertices: int64, percentComplete: double, annotatedSegments: int64, annotatedVertices: int64, unannotatedSegments: int64, unannotatedVertices: int64>
              comment: string
              confirm: bool
              skipped: bool
              attributes: struct<tags: list<item: null>, attributes: struct<>>
              mesh_quality: list<item: null>
              relabel_reason: string
              skipped_reason: string
              label_version: string
              vs
              data: list<item: struct<uid: string, label: string, modelId: string, children: list<item: null>, objectId: int64, segments: struct<obb: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, partId: int64, fixScale: bool, segments: list<item: int64>, fixRotate: bool, obbAligned: struct<centroid: list<item: double>, axesLengths: list<item: double>, normalizedAxes: list<item: double>>, fixPosition: bool, dominantNormal: list<item: double>>, hierarchy: int64, isInGroup: bool, labelType: string, attributes: struct<tags: list<item: string>, attributes: struct<occlusion: string, orientation: string, incompleteness: string>>>>
              stats: struct<labelCount: int64, totalSegments: int64, totalVertices: int64, percentComplete: double, annotatedSegments: int64, annotatedVertices: int64, unannotatedSegments: int64, unannotatedVertices: int64>
              comment: string
              confirm: bool
              skipped: bool
              attributes: struct<tags: list<item: null>, attributes: struct<>>
              mesh_quality: list<item: null>
              skipped_reason: string
              label_version: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

ARKitScenes 评估数据(mesh / annotation / mov)说明

本目录用于保存 ARKitScenes 原始数据集(raw)中筛选出的三类核心资产,便于快速可视化与理解 3D 场景结构。

  • 根目录:embodied/vedio_layout/eval_data/raw/Training
  • 组织形式:每个子文件夹为一条数据(一次扫描),文件夹名为 video_id
  • 每条数据包含三个文件:
    • video_id_3dod_mesh.ply(三角网格)
    • video_id_3dod_annotation.json(3D 定向包围框标注)
    • video_id.mov(采集原始视频)

三类资产详解

mesh(video_id_3dod_mesh.ply

  • 含义:ARKit 设备端在扫描过程中融合重建得到的彩色三角网格(PLY),表示整场景表面。
  • 来源:ARKitScenes raw 数据集的 mesh 资产(设备端表面重建输出)。
  • 坐标系与单位:
    • 坐标系为 ARKit 会话的“世界坐标系”(global),与该次视频的相机轨迹一致。
  • 典型属性:
    • PLY 文件通常包含 vertex(顶点坐标、可选颜色)与 face(三角面);用于高质量场景可视化。
    • 与 annotation 处在同一坐标系,可直接叠加可视化(见下文示例)。

annotation(video_id_3dod_annotation.json

  • 含义:针对家具等房间内主要物体的 3D 定向包围框标注(oriented bounding box, OBB)。
  • 来源:ARKitScenes 提供的人工标注(3DOD)。
  • 关键字段(每个标注项):
    • label:物体类别名称(如 chairtablecabinet 等)
    • segments.obb.centroid:包围框中心(x,y,z
    • segments.obb.axesLengths:三轴尺寸(dx,dy,dz
    • segments.obb.normalizedAxes:3×3 旋转矩阵(行优先展开)
    • segments.obbAligned.*:对齐到主轴后的表示(便于部分算法使用)
    • 还包含 dominantNormalattributeslabel_version 等辅助信息
  • 坐标系:与 mesh 相同的 ARKit 世界坐标,可一并加载进行叠加显示。

mov(video_id.mov

  • 含义:ARKit 会话采集的原始视频(.mov),完整记录扫描过程。
  • 来源:ARKitScenes raw 数据集的 mov 资产。
  • 用途:作为视觉参考或进行时间维度分析;若结合相机内参/位姿,可做图像平面投影或逐帧可视化。
Downloads last month
7