_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q1600
MultiFilter.filters
train
def filters(self): """ Returns the list of base filters. :return: the filter list :rtype: list """ objects = javabridge.get_env().get_object_array_elements( javabridge.call(self.jobject, "getFilters", "()[Lweka/filters/Filter;")) result = [] for obj in objects: result.append(Filter(jobject=obj)) return result
python
{ "resource": "" }
q1601
MultiFilter.filters
train
def filters(self, filters): """ Sets the base filters. :param filters: the list of base filters to use :type filters: list """ obj = [] for fltr in filters: obj.append(fltr.jobject) javabridge.call(self.jobject, "setFilters", "([Lweka/filters/Filter;)V", obj)
python
{ "resource": "" }
q1602
Container.generate_help
train
def generate_help(self): """ Generates a help string for this container. :return: the help string :rtype: str """ result = [] result.append(self.__class__.__name__) result.append(re.sub(r'.', '=', self.__class__.__name__)) result.append("") result.append("Supported value names:") for a in self.allowed: result.append(a) return '\n'.join(result)
python
{ "resource": "" }
q1603
plot_dot_graph
train
def plot_dot_graph(graph, filename=None): """ Plots a graph in graphviz dot notation. :param graph: the dot notation graph :type graph: str :param filename: the (optional) file to save the generated plot to. The extension determines the file format. :type filename: str """ if not plot.pygraphviz_available: logger.error("Pygraphviz is not installed, cannot generate graph plot!") return if not plot.PIL_available: logger.error("PIL is not installed, cannot display graph plot!") return agraph = AGraph(graph) agraph.layout(prog='dot') if filename is None: filename = tempfile.mktemp(suffix=".png") agraph.draw(filename) image = Image.open(filename) image.show()
python
{ "resource": "" }
q1604
Stemmer.stem
train
def stem(self, s): """ Performs stemming on the string. :param s: the string to stem :type s: str :return: the stemmed string :rtype: str """ return javabridge.get_env().get_string(self.__stem(javabridge.get_env().new_string_utf(s)))
python
{ "resource": "" }
q1605
Instances.attribute_by_name
train
def attribute_by_name(self, name): """ Returns the specified attribute, None if not found. :param name: the name of the attribute :type name: str :return: the attribute or None :rtype: Attribute """ att = self.__attribute_by_name(javabridge.get_env().new_string(name)) if att is None: return None else: return Attribute(att)
python
{ "resource": "" }
q1606
Instances.add_instance
train
def add_instance(self, inst, index=None): """ Adds the specified instance to the dataset. :param inst: the Instance to add :type inst: Instance :param index: the 0-based index where to add the Instance :type index: int """ if index is None: self.__append_instance(inst.jobject) else: self.__insert_instance(index, inst.jobject)
python
{ "resource": "" }
q1607
Instances.set_instance
train
def set_instance(self, index, inst): """ Sets the Instance at the specified location in the dataset. :param index: the 0-based index of the instance to replace :type index: int :param inst: the Instance to set :type inst: Instance :return: the instance :rtype: Instance """ return Instance( self.__set_instance(index, inst.jobject))
python
{ "resource": "" }
q1608
Instances.delete
train
def delete(self, index=None): """ Removes either the specified Instance or all Instance objects. :param index: the 0-based index of the instance to remove :type index: int """ if index is None: javabridge.call(self.jobject, "delete", "()V") else: javabridge.call(self.jobject, "delete", "(I)V", index)
python
{ "resource": "" }
q1609
Instances.insert_attribute
train
def insert_attribute(self, att, index): """ Inserts the attribute at the specified location. :param att: the attribute to insert :type att: Attribute :param index: the index to insert the attribute at :type index: int """ javabridge.call(self.jobject, "insertAttributeAt", "(Lweka/core/Attribute;I)V", att.jobject, index)
python
{ "resource": "" }
q1610
Instances.train_cv
train
def train_cv(self, num_folds, fold, random=None): """ Generates a training fold for cross-validation. :param num_folds: the number of folds of cross-validation, eg 10 :type num_folds: int :param fold: the current fold (0-based) :type fold: int :param random: the random number generator :type random: Random :return: the training fold :rtype: Instances """ if random is None: return Instances( javabridge.call(self.jobject, "trainCV", "(II)Lweka/core/Instances;", num_folds, fold)) else: return Instances( javabridge.call(self.jobject, "trainCV", "(IILjava/util/Random;)Lweka/core/Instances;", num_folds, fold, random.jobject))
python
{ "resource": "" }
q1611
Instances.copy_instances
train
def copy_instances(cls, dataset, from_row=None, num_rows=None): """ Creates a copy of the Instances. If either from_row or num_rows are None, then all of the data is being copied. :param dataset: the original dataset :type dataset: Instances :param from_row: the 0-based start index of the rows to copy :type from_row: int :param num_rows: the number of rows to copy :type num_rows: int :return: the copy of the data :rtype: Instances """ if from_row is None or num_rows is None: return Instances( javabridge.make_instance( "weka/core/Instances", "(Lweka/core/Instances;)V", dataset.jobject)) else: dataset = cls.copy_instances(dataset) return Instances( javabridge.make_instance( "weka/core/Instances", "(Lweka/core/Instances;II)V", dataset.jobject, from_row, num_rows))
python
{ "resource": "" }
q1612
Instances.template_instances
train
def template_instances(cls, dataset, capacity=0): """ Uses the Instances as template to create an empty dataset. :param dataset: the original dataset :type dataset: Instances :param capacity: how many data rows to reserve initially (see compactify) :type capacity: int :return: the empty dataset :rtype: Instances """ return Instances( javabridge.make_instance( "weka/core/Instances", "(Lweka/core/Instances;I)V", dataset.jobject, capacity))
python
{ "resource": "" }
q1613
Instances.create_instances
train
def create_instances(cls, name, atts, capacity): """ Creates a new Instances. :param name: the relation name :type name: str :param atts: the list of attributes to use for the dataset :type atts: list of Attribute :param capacity: how many data rows to reserve initially (see compactify) :type capacity: int :return: the dataset :rtype: Instances """ attributes = [] for att in atts: attributes.append(att.jobject) return Instances( javabridge.make_instance( "weka/core/Instances", "(Ljava/lang/String;Ljava/util/ArrayList;I)V", name, javabridge.make_list(attributes), capacity))
python
{ "resource": "" }
q1614
Instance.dataset
train
def dataset(self): """ Returns the dataset that this instance belongs to. :return: the dataset or None if no dataset set :rtype: Instances """ dataset = javabridge.call(self.jobject, "dataset", "()Lweka/core/Instances;") if dataset is None: return None else: return Instances(dataset)
python
{ "resource": "" }
q1615
Instance.create_sparse_instance
train
def create_sparse_instance(cls, values, max_values, classname="weka.core.SparseInstance", weight=1.0): """ Creates a new sparse instance. :param values: the list of tuples (0-based index and internal format float). The indices of the tuples must be in ascending order and "max_values" must be set to the maximum number of attributes in the dataset. :type values: list :param max_values: the maximum number of attributes :type max_values: int :param classname: the classname of the instance (eg weka.core.SparseInstance). :type classname: str :param weight: the weight of the instance :type weight: float """ jni_classname = classname.replace(".", "/") indices = [] vals = [] for (i, v) in values: indices.append(i) vals.append(float(v)) indices = numpy.array(indices, dtype=numpy.int32) vals = numpy.array(vals) return Instance( javabridge.make_instance( jni_classname, "(D[D[II)V", weight, javabridge.get_env().make_double_array(vals), javabridge.get_env().make_int_array(indices), max_values))
python
{ "resource": "" }
q1616
Attribute.type_str
train
def type_str(self, short=False): """ Returns the type of the attribute as string. :return: the type :rtype: str """ if short: return javabridge.static_call( "weka/core/Attribute", "typeToStringShort", "(Lweka/core/Attribute;)Ljava/lang/String;", self.jobject) else: return javabridge.static_call( "weka/core/Attribute", "typeToString", "(Lweka/core/Attribute;)Ljava/lang/String;", self.jobject)
python
{ "resource": "" }
q1617
Attribute.copy
train
def copy(self, name=None): """ Creates a copy of this attribute. :param name: the new name, uses the old one if None :type name: str :return: the copy of the attribute :rtype: Attribute """ if name is None: return Attribute( javabridge.call(self.jobject, "copy", "()Ljava/lang/Object;")) else: return Attribute( javabridge.call(self.jobject, "copy", "(Ljava/lang/String;)Lweka/core/Attribute;", name))
python
{ "resource": "" }
q1618
Attribute.create_nominal
train
def create_nominal(cls, name, labels): """ Creates a nominal attribute. :param name: the name of the attribute :type name: str :param labels: the list of string labels to use :type labels: list """ return Attribute( javabridge.make_instance( "weka/core/Attribute", "(Ljava/lang/String;Ljava/util/List;)V", name, javabridge.make_list(labels)))
python
{ "resource": "" }
q1619
Attribute.create_relational
train
def create_relational(cls, name, inst): """ Creates a relational attribute. :param name: the name of the attribute :type name: str :param inst: the structure of the relational attribute :type inst: Instances """ return Attribute( javabridge.make_instance( "weka/core/Attribute", "(Ljava/lang/String;Lweka/core/Instances;)V", name, inst.jobject))
python
{ "resource": "" }
q1620
add_bundled_jars
train
def add_bundled_jars(): """ Adds the bundled jars to the JVM's classpath. """ # determine lib directory with jars rootdir = os.path.split(os.path.dirname(__file__))[0] libdir = rootdir + os.sep + "lib" # add jars from lib directory for l in glob.glob(libdir + os.sep + "*.jar"): if l.lower().find("-src.") == -1: javabridge.JARS.append(str(l))
python
{ "resource": "" }
q1621
add_system_classpath
train
def add_system_classpath(): """ Adds the system's classpath to the JVM's classpath. """ if 'CLASSPATH' in os.environ: parts = os.environ['CLASSPATH'].split(os.pathsep) for part in parts: javabridge.JARS.append(part)
python
{ "resource": "" }
q1622
get_class
train
def get_class(classname): """ Returns the class object associated with the dot-notation classname. Taken from here: http://stackoverflow.com/a/452981 :param classname: the classname :type classname: str :return: the class object :rtype: object """ parts = classname.split('.') module = ".".join(parts[:-1]) m = __import__(module) for comp in parts[1:]: m = getattr(m, comp) return m
python
{ "resource": "" }
q1623
get_jclass
train
def get_jclass(classname): """ Returns the Java class object associated with the dot-notation classname. :param classname: the classname :type classname: str :return: the class object :rtype: JB_Object """ try: return javabridge.class_for_name(classname) except: return javabridge.static_call( "Lweka/core/ClassHelper;", "forName", "(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Class;", javabridge.class_for_name("java.lang.Object"), classname)
python
{ "resource": "" }
q1624
get_static_field
train
def get_static_field(classname, fieldname, signature): """ Returns the Java object associated with the static field of the specified class. :param classname: the classname of the class to get the field from :type classname: str :param fieldname: the name of the field to retriev :type fieldname: str :return: the object :rtype: JB_Object """ try: return javabridge.get_static_field(classname, fieldname, signature) except: return javabridge.static_call( "Lweka/core/ClassHelper;", "getStaticField", "(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;", classname, fieldname)
python
{ "resource": "" }
q1625
get_classname
train
def get_classname(obj): """ Returns the classname of the JB_Object, Python class or object. :param obj: the java object or Python class/object to get the classname for :type obj: object :return: the classname :rtype: str """ if isinstance(obj, javabridge.JB_Object): cls = javabridge.call(obj, "getClass", "()Ljava/lang/Class;") return javabridge.call(cls, "getName", "()Ljava/lang/String;") elif inspect.isclass(obj): return obj.__module__ + "." + obj.__name__ else: return get_classname(obj.__class__)
python
{ "resource": "" }
q1626
is_instance_of
train
def is_instance_of(obj, class_or_intf_name): """ Checks whether the Java object implements the specified interface or is a subclass of the superclass. :param obj: the Java object to check :type obj: JB_Object :param class_or_intf_name: the superclass or interface to check, dot notation or with forward slashes :type class_or_intf_name: str :return: true if either implements interface or subclass of superclass :rtype: bool """ class_or_intf_name = class_or_intf_name.replace("/", ".") classname = get_classname(obj) # array? retrieve component type and check that if is_array(obj): jarray = JavaArray(jobject=obj) classname = jarray.component_type() result = javabridge.static_call( "Lweka/core/InheritanceUtils;", "isSubclass", "(Ljava/lang/String;Ljava/lang/String;)Z", class_or_intf_name, classname) if result: return True return javabridge.static_call( "Lweka/core/InheritanceUtils;", "hasInterface", "(Ljava/lang/String;Ljava/lang/String;)Z", class_or_intf_name, classname)
python
{ "resource": "" }
q1627
from_commandline
train
def from_commandline(cmdline, classname=None): """ Creates an OptionHandler based on the provided commandline string. :param cmdline: the commandline string to use :type cmdline: str :param classname: the classname of the wrapper to return other than OptionHandler (in dot-notation) :type classname: str :return: the generated option handler instance :rtype: object """ params = split_options(cmdline) cls = params[0] params = params[1:] handler = OptionHandler(javabridge.static_call( "Lweka/core/Utils;", "forName", "(Ljava/lang/Class;Ljava/lang/String;[Ljava/lang/String;)Ljava/lang/Object;", javabridge.class_for_name("java.lang.Object"), cls, params)) if classname is None: return handler else: c = get_class(classname) return c(jobject=handler.jobject)
python
{ "resource": "" }
q1628
complete_classname
train
def complete_classname(classname): """ Attempts to complete a partial classname like '.J48' and returns the full classname if a single match was found, otherwise an exception is raised. :param classname: the partial classname to expand :type classname: str :return: the full classname :rtype: str """ result = javabridge.get_collection_wrapper( javabridge.static_call( "Lweka/Run;", "findSchemeMatch", "(Ljava/lang/String;Z)Ljava/util/List;", classname, True)) if len(result) == 1: return str(result[0]) elif len(result) == 0: raise Exception("No classname matches found for: " + classname) else: matches = [] for i in range(len(result)): matches.append(str(result[i])) raise Exception("Found multiple matches for '" + classname + "':\n" + '\n'.join(matches))
python
{ "resource": "" }
q1629
JSONObject.to_json
train
def to_json(self): """ Returns the options as JSON. :return: the object as string :rtype: str """ return json.dumps(self.to_dict(), sort_keys=True, indent=2, separators=(',', ': '))
python
{ "resource": "" }
q1630
JSONObject.from_json
train
def from_json(cls, s): """ Restores the object from the given JSON. :param s: the JSON string to parse :type s: str :return: the """ d = json.loads(s) return get_dict_handler(d["type"])(d)
python
{ "resource": "" }
q1631
Configurable.from_dict
train
def from_dict(cls, d): """ Restores its state from a dictionary, used in de-JSONification. :param d: the object dictionary :type d: dict """ conf = {} for k in d["config"]: v = d["config"][k] if isinstance(v, dict): conf[str(k)] = get_dict_handler(d["config"]["type"])(v) else: conf[str(k)] = v return get_class(str(d["class"]))(config=conf)
python
{ "resource": "" }
q1632
Configurable.logger
train
def logger(self): """ Returns the logger object. :return: the logger :rtype: logger """ if self._logger is None: self._logger = self.new_logger() return self._logger
python
{ "resource": "" }
q1633
Configurable.generate_help
train
def generate_help(self): """ Generates a help string for this actor. :return: the help string :rtype: str """ result = [] result.append(self.__class__.__name__) result.append(re.sub(r'.', '=', self.__class__.__name__)) result.append("") result.append("DESCRIPTION") result.append(self.description()) result.append("") result.append("OPTIONS") opts = sorted(self.config.keys()) for opt in opts: result.append(opt) helpstr = self.help[opt] if helpstr is None: helpstr = "-missing help-" result.append("\t" + helpstr) result.append("") return '\n'.join(result)
python
{ "resource": "" }
q1634
JavaObject.classname
train
def classname(self): """ Returns the Java classname in dot-notation. :return: the Java classname :rtype: str """ cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;") return javabridge.call(cls, "getName", "()Ljava/lang/String;")
python
{ "resource": "" }
q1635
JavaObject.enforce_type
train
def enforce_type(cls, jobject, intf_or_class): """ Raises an exception if the object does not implement the specified interface or is not a subclass. :param jobject: the Java object to check :type jobject: JB_Object :param intf_or_class: the classname in Java notation (eg "weka.core.DenseInstance") :type intf_or_class: str """ if not cls.check_type(jobject, intf_or_class): raise TypeError("Object does not implement or subclass " + intf_or_class + ": " + get_classname(jobject))
python
{ "resource": "" }
q1636
JavaObject.new_instance
train
def new_instance(cls, classname): """ Creates a new object from the given classname using the default constructor, None in case of error. :param classname: the classname in Java notation (eg "weka.core.DenseInstance") :type classname: str :return: the Java object :rtype: JB_Object """ try: return javabridge.static_call( "Lweka/core/Utils;", "forName", "(Ljava/lang/Class;Ljava/lang/String;[Ljava/lang/String;)Ljava/lang/Object;", javabridge.class_for_name("java.lang.Object"), classname, []) except JavaException as e: print("Failed to instantiate " + classname + ": " + str(e)) return None
python
{ "resource": "" }
q1637
Environment.add_variable
train
def add_variable(self, key, value, system_wide=False): """ Adds the environment variable. :param key: the name of the variable :type key: str :param value: the value :type value: str :param system_wide: whether to add the variable system wide :type system_wide: bool """ if system_wide: javabridge.call(self.jobject, "addVariableSystemWide", "(Ljava/lang/String;Ljava/lang/String;)V", key, value) else: javabridge.call(self.jobject, "addVariable", "(Ljava/lang/String;Ljava/lang/String;)V", key, value)
python
{ "resource": "" }
q1638
Environment.variable_names
train
def variable_names(self): """ Returns the names of all environment variables. :return: the names of the variables :rtype: list """ result = [] names = javabridge.call(self.jobject, "getVariableNames", "()Ljava/util/Set;") for name in javabridge.iterate_collection(names): result.append(javabridge.to_string(name)) return result
python
{ "resource": "" }
q1639
JavaArray.component_type
train
def component_type(self): """ Returns the classname of the elements. :return: the class of the elements :rtype: str """ cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;") comptype = javabridge.call(cls, "getComponentType", "()Ljava/lang/Class;") return javabridge.call(comptype, "getName", "()Ljava/lang/String;")
python
{ "resource": "" }
q1640
JavaArray.new_instance
train
def new_instance(cls, classname, length): """ Creates a new array with the given classname and length; initial values are null. :param classname: the classname in Java notation (eg "weka.core.DenseInstance") :type classname: str :param length: the length of the array :type length: int :return: the Java array :rtype: JB_Object """ return javabridge.static_call( "Ljava/lang/reflect/Array;", "newInstance", "(Ljava/lang/Class;I)Ljava/lang/Object;", get_jclass(classname=classname), length)
python
{ "resource": "" }
q1641
Enum.values
train
def values(self): """ Returns list of all enum members. :return: all enum members :rtype: list """ cls = javabridge.call(self.jobject, "getClass", "()Ljava/lang/Class;") clsname = javabridge.call(cls, "getName", "()Ljava/lang/String;") l = javabridge.static_call(clsname.replace(".", "/"), "values", "()[L" + clsname.replace(".", "/") + ";") l = javabridge.get_env().get_object_array_elements(l) result = [] for item in l: result.append(Enum(jobject=item)) return result
python
{ "resource": "" }
q1642
Random.next_int
train
def next_int(self, n=None): """ Next random integer. if n is provided, then between 0 and n-1. :param n: the upper limit (minus 1) for the random integer :type n: int :return: the next random integer :rtype: int """ if n is None: return javabridge.call(self.jobject, "nextInt", "()I") else: return javabridge.call(self.jobject, "nextInt", "(I)I", n)
python
{ "resource": "" }
q1643
OptionHandler.to_help
train
def to_help(self): """ Returns a string that contains the 'global_info' text and the options. :return: the generated help string :rtype: str """ result = [] result.append(self.classname) result.append("=" * len(self.classname)) result.append("") result.append("DESCRIPTION") result.append("") result.append(self.global_info()) result.append("") result.append("OPTIONS") result.append("") options = javabridge.call(self.jobject, "listOptions", "()Ljava/util/Enumeration;") enum = javabridge.get_enumeration_wrapper(options) while enum.hasMoreElements(): opt = Option(enum.nextElement()) result.append(opt.synopsis) result.append(opt.description) result.append("") return '\n'.join(result)
python
{ "resource": "" }
q1644
Tags.find
train
def find(self, name): """ Returns the Tag that matches the name. :param name: the string representation of the tag :type name: str :return: the tag, None if not found :rtype: Tag """ result = None for t in self.array: if str(t) == name: result = Tag(t.jobject) break return result
python
{ "resource": "" }
q1645
Tags.get_object_tags
train
def get_object_tags(cls, javaobject, methodname): """ Instantiates the Tag array obtained from the object using the specified method name. Example: cls = Classifier(classname="weka.classifiers.meta.MultiSearch") tags = Tags.get_object_tags(cls, "getMetricsTags") :param javaobject: the javaobject to obtain the tags from :type javaobject: JavaObject :param methodname: the method name returning the Tag array :type methodname: str :return: the Tags objects :rtype: Tags """ return Tags(jobject=javabridge.call(javaobject.jobject, methodname, "()[Lweka/core/Tag;"))
python
{ "resource": "" }
q1646
SelectedTag.tags
train
def tags(self): """ Returns the associated tags. :return: the list of Tag objects :rtype: list """ result = [] a = javabridge.call(self.jobject, "getTags", "()Lweka/core/Tag;]") length = javabridge.get_env().get_array_length(a) wrapped = javabridge.get_env().get_object_array_elements(a) for i in range(length): result.append(Tag(javabridge.get_env().get_string(wrapped[i]))) return result
python
{ "resource": "" }
q1647
SetupGenerator.base_object
train
def base_object(self): """ Returns the base object to apply the setups to. :return: the base object :rtype: JavaObject or OptionHandler """ jobj = javabridge.call(self.jobject, "getBaseObject", "()Ljava/io/Serializable;") if OptionHandler.check_type(jobj, "weka.core.OptionHandler"): return OptionHandler(jobj) else: return JavaObject(jobj)
python
{ "resource": "" }
q1648
SetupGenerator.base_object
train
def base_object(self, obj): """ Sets the base object to apply the setups to. :param obj: the object to use (must be serializable!) :type obj: JavaObject """ if not obj.is_serializable: raise Exception("Base object must be serializable: " + obj.classname) javabridge.call(self.jobject, "setBaseObject", "(Ljava/io/Serializable;)V", obj.jobject)
python
{ "resource": "" }
q1649
SetupGenerator.parameters
train
def parameters(self): """ Returns the list of currently set search parameters. :return: the list of AbstractSearchParameter objects :rtype: list """ array = JavaArray(javabridge.call(self.jobject, "getParameters", "()[Lweka/core/setupgenerator/AbstractParameter;")) result = [] for item in array: result.append(AbstractParameter(jobject=item.jobject)) return result
python
{ "resource": "" }
q1650
SetupGenerator.parameters
train
def parameters(self, params): """ Sets the list of search parameters to use. :param params: list of AbstractSearchParameter objects :type params: list """ array = JavaArray(jobject=JavaArray.new_instance("weka.core.setupgenerator.AbstractParameter", len(params))) for idx, obj in enumerate(params): array[idx] = obj.jobject javabridge.call(self.jobject, "setParameters", "([Lweka/core/setupgenerator/AbstractParameter;)V", array.jobject)
python
{ "resource": "" }
q1651
SetupGenerator.setups
train
def setups(self): """ Generates and returns all the setups according to the parameter search space. :return: the list of configured objects (of type JavaObject) :rtype: list """ result = [] has_options = self.base_object.is_optionhandler enm = javabridge.get_enumeration_wrapper(javabridge.call(self.jobject, "setups", "()Ljava/util/Enumeration;")) while enm.hasMoreElements(): if has_options: result.append(OptionHandler(enm.nextElement())) else: result.append(JavaObject(enm.nextElement())) return result
python
{ "resource": "" }
q1652
Actor.unique_name
train
def unique_name(self, name): """ Generates a unique name. :param name: the name to check :type name: str :return: the unique name :rtype: str """ result = name if self.parent is not None: index = self.index bname = re.sub(r'-[0-9]+$', '', name) names = [] for idx, actor in enumerate(self.parent.actors): if idx != index: names.append(actor.name) result = bname count = 0 while result in names: count += 1 result = bname + "-" + str(count) return result
python
{ "resource": "" }
q1653
Actor.parent
train
def parent(self, parent): """ Sets the parent of the actor. :param parent: the parent :type parent: Actor """ self._name = self.unique_name(self._name) self._full_name = None self._logger = None self._parent = parent
python
{ "resource": "" }
q1654
Actor.full_name
train
def full_name(self): """ Obtains the full name of the actor. :return: the full name :rtype: str """ if self._full_name is None: fn = self.name.replace(".", "\\.") parent = self._parent if parent is not None: fn = parent.full_name + "." + fn self._full_name = fn return self._full_name
python
{ "resource": "" }
q1655
Actor.storagehandler
train
def storagehandler(self): """ Returns the storage handler available to thise actor. :return: the storage handler, None if not available """ if isinstance(self, StorageHandler): return self elif self.parent is not None: return self.parent.storagehandler else: return None
python
{ "resource": "" }
q1656
Actor.execute
train
def execute(self): """ Executes the actor. :return: None if successful, otherwise error message :rtype: str """ if self.skip: return None result = self.pre_execute() if result is None: try: result = self.do_execute() except Exception as e: result = traceback.format_exc() print(self.full_name + "\n" + result) if result is None: result = self.post_execute() return result
python
{ "resource": "" }
q1657
ActorHandler.actors
train
def actors(self, actors): """ Sets the sub-actors of the actor. :param actors: the sub-actors :type actors: list """ if actors is None: actors = self.default_actors() self.check_actors(actors) self.config["actors"] = actors
python
{ "resource": "" }
q1658
ActorHandler.active
train
def active(self): """ Returns the count of non-skipped actors. :return: the count :rtype: int """ result = 0 for actor in self.actors: if not actor.skip: result += 1 return result
python
{ "resource": "" }
q1659
ActorHandler.first_active
train
def first_active(self): """ Returns the first non-skipped actor. :return: the first active actor, None if not available :rtype: Actor """ result = None for actor in self.actors: if not actor.skip: result = actor break return result
python
{ "resource": "" }
q1660
ActorHandler.last_active
train
def last_active(self): """ Returns the last non-skipped actor. :return: the last active actor, None if not available :rtype: Actor """ result = None for actor in reversed(self.actors): if not actor.skip: result = actor break return result
python
{ "resource": "" }
q1661
ActorHandler.index_of
train
def index_of(self, name): """ Returns the index of the actor with the given name. :param name: the name of the Actor to find :type name: str :return: the index, -1 if not found :rtype: int """ result = -1 for index, actor in enumerate(self.actors): if actor.name == name: result = index break return result
python
{ "resource": "" }
q1662
ActorHandler.setup
train
def setup(self): """ Configures the actor before execution. :return: None if successful, otherwise error message :rtype: str """ result = super(ActorHandler, self).setup() if result is None: self.update_parent() try: self.check_actors(self.actors) except Exception as e: result = str(e) if result is None: for actor in self.actors: name = actor.name newname = actor.unique_name(actor.name) if name != newname: actor.name = newname if result is None: for actor in self.actors: if actor.skip: continue result = actor.setup() if result is not None: break if result is None: result = self._director.setup() return result
python
{ "resource": "" }
q1663
ActorHandler.cleanup
train
def cleanup(self): """ Destructive finishing up after execution stopped. """ for actor in self.actors: if actor.skip: continue actor.cleanup() super(ActorHandler, self).cleanup()
python
{ "resource": "" }
q1664
Flow.load
train
def load(cls, fname): """ Loads the flow from a JSON file. :param fname: the file to load :type fname: str :return: the flow :rtype: Flow """ with open(fname) as f: content = f.readlines() return Flow.from_json(''.join(content))
python
{ "resource": "" }
q1665
Sequence.new_director
train
def new_director(self): """ Creates the director to use for handling the sub-actors. :return: the director instance :rtype: Director """ result = SequentialDirector(self) result.record_output = False result.allow_source = False return result
python
{ "resource": "" }
q1666
CommandlineToAny.check_input
train
def check_input(self, obj): """ Performs checks on the input object. Raises an exception if unsupported. :param obj: the object to check :type obj: object """ if isinstance(obj, str): return if isinstance(obj, unicode): return raise Exception("Unsupported class: " + self._input.__class__.__name__)
python
{ "resource": "" }
q1667
CommandlineToAny.convert
train
def convert(self): """ Performs the actual conversion. :return: None if successful, otherwise errors message :rtype: str """ cname = str(self.config["wrapper"]) self._output = classes.from_commandline(self._input, classname=cname) return None
python
{ "resource": "" }
q1668
plot_experiment
train
def plot_experiment(mat, title="Experiment", axes_swapped=False, measure="Statistic", show_stdev=False, key_loc="lower right", outfile=None, wait=True): """ Plots the results from an experiment. :param mat: the result matrix to plot :type mat: ResultMatrix :param title: the title for the experiment :type title: str :param axes_swapped: whether the axes whether swapped ("sets x cls" or "cls x sets") :type axes_swapped: bool :param measure: the measure that is being displayed :type measure: str :param show_stdev: whether to show the standard deviation as error bar :type show_stdev: bool :param key_loc: the location string for the key :type key_loc: str :param outfile: the output file, ignored if None :type outfile: str :param wait: whether to wait for the user to close the plot :type wait: bool """ if not plot.matplotlib_available: logger.error("Matplotlib is not installed, plotting unavailable!") return if not isinstance(mat, ResultMatrix): logger.error("Need to supply a result matrix!") return fig, ax = plt.subplots() if axes_swapped: ax.set_xlabel(measure) ax.set_ylabel("Classifiers") else: ax.set_xlabel("Classifiers") ax.set_ylabel(measure) ax.set_title(title) fig.canvas.set_window_title(title) ax.grid(True) ticksx = [] ticks = [] inc = 1.0 / float(mat.columns) for i in range(mat.columns): ticksx.append((i + 0.5) * inc) ticks.append("[" + str(i+1) + "]") plt.xticks(ticksx, ticks) plt.xlim([0.0, 1.0]) for r in range(mat.rows): x = [] means = [] stdevs = [] for c in range(mat.columns): mean = mat.get_mean(c, r) stdev = mat.get_stdev(c, r) if not math.isnan(mean): x.append((c + 0.5) * inc) means.append(mean) if not math.isnan(stdev): stdevs.append(stdev) plot_label = mat.get_row_name(r) if show_stdev: ax.errorbar(x, means, yerr=stdevs, fmt='-o', ls="-", label=plot_label) else: ax.plot(x, means, "o-", label=plot_label) plt.draw() plt.legend(loc=key_loc, shadow=True) if outfile is not None: plt.savefig(outfile) if wait: plt.show()
python
{ "resource": "" }
q1669
predictions_to_instances
train
def predictions_to_instances(data, preds): """ Turns the predictions turned into an Instances object. :param data: the original dataset format :type data: Instances :param preds: the predictions to convert :type preds: list :return: the predictions, None if no predictions present :rtype: Instances """ if len(preds) == 0: return None is_numeric = isinstance(preds[0], NumericPrediction) # create header atts = [] if is_numeric: atts.append(Attribute.create_numeric("index")) atts.append(Attribute.create_numeric("weight")) atts.append(Attribute.create_numeric("actual")) atts.append(Attribute.create_numeric("predicted")) atts.append(Attribute.create_numeric("error")) else: atts.append(Attribute.create_numeric("index")) atts.append(Attribute.create_numeric("weight")) atts.append(data.class_attribute.copy(name="actual")) atts.append(data.class_attribute.copy(name="predicted")) atts.append(Attribute.create_nominal("error", ["no", "yes"])) atts.append(Attribute.create_numeric("classification")) for i in range(data.class_attribute.num_values): atts.append(Attribute.create_numeric("distribution-" + data.class_attribute.value(i))) result = Instances.create_instances("Predictions", atts, len(preds)) count = 0 for pred in preds: count += 1 if is_numeric: values = array([count, pred.weight, pred.actual, pred.predicted, pred.error]) else: if pred.actual == pred.predicted: error = 0.0 else: error = 1.0 l = [count, pred.weight, pred.actual, pred.predicted, error, max(pred.distribution)] for i in range(data.class_attribute.num_values): l.append(pred.distribution[i]) values = array(l) inst = Instance.create_instance(values) result.add_instance(inst) return result
python
{ "resource": "" }
q1670
Classifier.batch_size
train
def batch_size(self, size): """ Sets the batch size, in case this classifier is a batch predictor. :param size: the size of the batch :type size: str """ if self.is_batchpredictor: javabridge.call(self.jobject, "setBatchSize", "(Ljava/lang/String;)V", size)
python
{ "resource": "" }
q1671
Classifier.to_source
train
def to_source(self, classname): """ Returns the model as Java source code if the classifier implements weka.classifiers.Sourcable. :param classname: the classname for the generated Java code :type classname: str :return: the model as source code string :rtype: str """ if not self.check_type(self.jobject, "weka.classifiers.Sourcable"): return None return javabridge.call(self.jobject, "toSource", "(Ljava/lang/String;)Ljava/lang/String;", classname)
python
{ "resource": "" }
q1672
GridSearch.evaluation
train
def evaluation(self, evl): """ Sets the statistic to use for evaluation. :param evl: the statistic :type evl: SelectedTag, Tag or str """ if isinstance(evl, str): evl = self.tags_evaluation.find(evl) if isinstance(evl, Tag): evl = SelectedTag(tag_id=evl.ident, tags=self.tags_evaluation) javabridge.call(self.jobject, "setEvaluation", "(Lweka/core/SelectedTag;)V", evl.jobject)
python
{ "resource": "" }
q1673
MultipleClassifiersCombiner.classifiers
train
def classifiers(self): """ Returns the list of base classifiers. :return: the classifier list :rtype: list """ objects = javabridge.get_env().get_object_array_elements( javabridge.call(self.jobject, "getClassifiers", "()[Lweka/classifiers/Classifier;")) result = [] for obj in objects: result.append(Classifier(jobject=obj)) return result
python
{ "resource": "" }
q1674
MultipleClassifiersCombiner.classifiers
train
def classifiers(self, classifiers): """ Sets the base classifiers. :param classifiers: the list of base classifiers to use :type classifiers: list """ obj = [] for classifier in classifiers: obj.append(classifier.jobject) javabridge.call(self.jobject, "setClassifiers", "([Lweka/classifiers/Classifier;)V", obj)
python
{ "resource": "" }
q1675
Kernel.eval
train
def eval(self, id1, id2, inst1): """ Computes the result of the kernel function for two instances. If id1 == -1, eval use inst1 instead of an instance in the dataset. :param id1: the index of the first instance in the dataset :type id1: int :param id2: the index of the second instance in the dataset :type id2: int :param inst1: the instance corresponding to id1 (used if id1 == -1) :type inst1: Instance """ jinst1 = None if inst1 is not None: jinst1 = inst1.jobject return javabridge.call(self.jobject, "eval", "(IILweka/core/Instance;)D", id1, id2, jinst1)
python
{ "resource": "" }
q1676
KernelClassifier.kernel
train
def kernel(self): """ Returns the current kernel. :return: the kernel or None if none found :rtype: Kernel """ result = javabridge.static_call( "weka/classifiers/KernelHelper", "getKernel", "(Ljava/lang/Object;)Lweka/classifiers/functions/supportVector/Kernel;", self.jobject) if result is None: return None else: return Kernel(jobject=result)
python
{ "resource": "" }
q1677
KernelClassifier.kernel
train
def kernel(self, kernel): """ Sets the kernel. :param kernel: the kernel to set :type kernel: Kernel """ result = javabridge.static_call( "weka/classifiers/KernelHelper", "setKernel", "(Ljava/lang/Object;Lweka/classifiers/functions/supportVector/Kernel;)Z", self.jobject, kernel.jobject) if not result: raise Exception("Failed to set kernel!")
python
{ "resource": "" }
q1678
CostMatrix.apply_cost_matrix
train
def apply_cost_matrix(self, data, rnd): """ Applies the cost matrix to the data. :param data: the data to apply to :type data: Instances :param rnd: the random number generator :type rnd: Random """ return Instances( javabridge.call( self.jobject, "applyCostMatrix", "(Lweka/core/Instances;Ljava/util/Random;)Lweka/core/Instances;", data.jobject, rnd.jobject))
python
{ "resource": "" }
q1679
CostMatrix.expected_costs
train
def expected_costs(self, class_probs, inst=None): """ Calculates the expected misclassification cost for each possible class value, given class probability estimates. :param class_probs: the class probabilities :type class_probs: ndarray :return: the calculated costs :rtype: ndarray """ if inst is None: costs = javabridge.call( self.jobject, "expectedCosts", "([D)[D", javabridge.get_env().make_double_array(class_probs)) return javabridge.get_env().get_double_array_elements(costs) else: costs = javabridge.call( self.jobject, "expectedCosts", "([DLweka/core/Instance;)[D", javabridge.get_env().make_double_array(class_probs), inst.jobject) return javabridge.get_env().get_double_array_elements(costs)
python
{ "resource": "" }
q1680
CostMatrix.get_cell
train
def get_cell(self, row, col): """ Returns the JB_Object at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :return: the object in that cell :rtype: JB_Object """ return javabridge.call( self.jobject, "getCell", "(II)Ljava/lang/Object;", row, col)
python
{ "resource": "" }
q1681
CostMatrix.set_cell
train
def set_cell(self, row, col, obj): """ Sets the JB_Object at the specified location. Automatically unwraps JavaObject. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param obj: the object for that cell :type obj: object """ if isinstance(obj, JavaObject): obj = obj.jobject javabridge.call( self.jobject, "setCell", "(IILjava/lang/Object;)V", row, col, obj)
python
{ "resource": "" }
q1682
CostMatrix.get_element
train
def get_element(self, row, col, inst=None): """ Returns the value at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param inst: the Instace :type inst: Instance :return: the value in that cell :rtype: float """ if inst is None: return javabridge.call( self.jobject, "getElement", "(II)D", row, col) else: return javabridge.call( self.jobject, "getElement", "(IILweka/core/Instance;)D", row, col, inst.jobject)
python
{ "resource": "" }
q1683
CostMatrix.set_element
train
def set_element(self, row, col, value): """ Sets the float value at the specified location. :param row: the 0-based index of the row :type row: int :param col: the 0-based index of the column :type col: int :param value: the float value for that cell :type value: float """ javabridge.call( self.jobject, "setElement", "(IID)V", row, col, value)
python
{ "resource": "" }
q1684
CostMatrix.get_max_cost
train
def get_max_cost(self, class_value, inst=None): """ Gets the maximum cost for a particular class value. :param class_value: the class value to get the maximum cost for :type class_value: int :param inst: the Instance :type inst: Instance :return: the cost :rtype: float """ if inst is None: return javabridge.call( self.jobject, "getMaxCost", "(I)D", class_value) else: return javabridge.call( self.jobject, "getElement", "(ILweka/core/Instance;)D", class_value, inst.jobject)
python
{ "resource": "" }
q1685
Evaluation.crossvalidate_model
train
def crossvalidate_model(self, classifier, data, num_folds, rnd, output=None): """ Crossvalidates the model using the specified data, number of folds and random number generator wrapper. :param classifier: the classifier to cross-validate :type classifier: Classifier :param data: the data to evaluate on :type data: Instances :param num_folds: the number of folds :type num_folds: int :param rnd: the random number generator to use :type rnd: Random :param output: the output generator to use :type output: PredictionOutput """ if output is None: generator = [] else: generator = [output.jobject] javabridge.call( self.jobject, "crossValidateModel", "(Lweka/classifiers/Classifier;Lweka/core/Instances;ILjava/util/Random;[Ljava/lang/Object;)V", classifier.jobject, data.jobject, num_folds, rnd.jobject, generator)
python
{ "resource": "" }
q1686
Evaluation.summary
train
def summary(self, title=None, complexity=False): """ Generates a summary. :param title: optional title :type title: str :param complexity: whether to print the complexity information as well :type complexity: bool :return: the summary :rtype: str """ if title is None: return javabridge.call( self.jobject, "toSummaryString", "()Ljava/lang/String;") else: return javabridge.call( self.jobject, "toSummaryString", "(Ljava/lang/String;Z)Ljava/lang/String;", title, complexity)
python
{ "resource": "" }
q1687
Evaluation.class_details
train
def class_details(self, title=None): """ Generates the class details. :param title: optional title :type title: str :return: the details :rtype: str """ if title is None: return javabridge.call( self.jobject, "toClassDetailsString", "()Ljava/lang/String;") else: return javabridge.call( self.jobject, "toClassDetailsString", "(Ljava/lang/String;)Ljava/lang/String;", title)
python
{ "resource": "" }
q1688
Evaluation.matrix
train
def matrix(self, title=None): """ Generates the confusion matrix. :param title: optional title :type title: str :return: the matrix :rtype: str """ if title is None: return javabridge.call(self.jobject, "toMatrixString", "()Ljava/lang/String;") else: return javabridge.call(self.jobject, "toMatrixString", "(Ljava/lang/String;)Ljava/lang/String;", title)
python
{ "resource": "" }
q1689
Evaluation.predictions
train
def predictions(self): """ Returns the predictions. :return: the predictions. None if not available :rtype: list """ preds = javabridge.get_collection_wrapper( javabridge.call(self.jobject, "predictions", "()Ljava/util/ArrayList;")) if self.discard_predictions: result = None else: result = [] for pred in preds: if is_instance_of(pred, "weka.classifiers.evaluation.NominalPrediction"): result.append(NominalPrediction(pred)) elif is_instance_of(pred, "weka.classifiers.evaluation.NumericPrediction"): result.append(NumericPrediction(pred)) else: result.append(Prediction(pred)) return result
python
{ "resource": "" }
q1690
PredictionOutput.print_all
train
def print_all(self, cls, data): """ Prints the header, classifications and footer to the buffer. :param cls: the classifier :type cls: Classifier :param data: the test data :type data: Instances """ javabridge.call( self.jobject, "print", "(Lweka/classifiers/Classifier;Lweka/core/Instances;)V", cls.jobject, data.jobject)
python
{ "resource": "" }
q1691
PredictionOutput.print_classifications
train
def print_classifications(self, cls, data): """ Prints the classifications to the buffer. :param cls: the classifier :type cls: Classifier :param data: the test data :type data: Instances """ javabridge.call( self.jobject, "printClassifications", "(Lweka/classifiers/Classifier;Lweka/core/Instances;)V", cls.jobject, data.jobject)
python
{ "resource": "" }
q1692
PredictionOutput.print_classification
train
def print_classification(self, cls, inst, index): """ Prints the classification to the buffer. :param cls: the classifier :type cls: Classifier :param inst: the test instance :type inst: Instance :param index: the 0-based index of the test instance :type index: int """ javabridge.call( self.jobject, "printClassification", "(Lweka/classifiers/Classifier;Lweka/core/Instance;I)V", cls.jobject, inst.jobject, index)
python
{ "resource": "" }
q1693
Tokenizer.tokenize
train
def tokenize(self, s): """ Tokenizes the string. :param s: the string to tokenize :type s: str :return: the iterator :rtype: TokenIterator """ javabridge.call(self.jobject, "tokenize", "(Ljava/lang/String;)V", s) return TokenIterator(self)
python
{ "resource": "" }
q1694
DataGenerator.define_data_format
train
def define_data_format(self): """ Returns the data format. :return: the data format :rtype: Instances """ data = javabridge.call(self.jobject, "defineDataFormat", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
python
{ "resource": "" }
q1695
DataGenerator.dataset_format
train
def dataset_format(self): """ Returns the dataset format. :return: the format :rtype: Instances """ data = javabridge.call(self.jobject, "getDatasetFormat", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
python
{ "resource": "" }
q1696
DataGenerator.generate_example
train
def generate_example(self): """ Returns a single Instance. :return: the next example :rtype: Instance """ data = javabridge.call(self.jobject, "generateExample", "()Lweka/core/Instance;") if data is None: return None else: return Instance(data)
python
{ "resource": "" }
q1697
DataGenerator.generate_examples
train
def generate_examples(self): """ Returns complete dataset. :return: the generated dataset :rtype: Instances """ data = javabridge.call(self.jobject, "generateExamples", "()Lweka/core/Instances;") if data is None: return None else: return Instances(data)
python
{ "resource": "" }
q1698
DataGenerator.make_copy
train
def make_copy(cls, generator): """ Creates a copy of the generator. :param generator: the generator to copy :type generator: DataGenerator :return: the copy of the generator :rtype: DataGenerator """ return from_commandline( to_commandline(generator), classname=classes.get_classname(DataGenerator()))
python
{ "resource": "" }
q1699
DataGenerator.to_config
train
def to_config(self, k, v): """ Hook method that allows conversion of individual options. :param k: the key of the option :type k: str :param v: the value :type v: object :return: the potentially processed value :rtype: object """ if k == "setup": return base.to_commandline(v) return super(DataGenerator, self).to_config(k, v)
python
{ "resource": "" }