DLT-Sentiment-News / README.md
walterhernandez's picture
Added dataset card
48dbfef verified
metadata
dataset_info:
  features:
    - name: timestamp
      dtype: string
    - name: title
      dtype: string
    - name: description
      dtype: string
    - name: text
      dtype: string
    - name: market_direction
      dtype:
        class_label:
          names:
            '0': neutral
            '1': bearish
            '2': bullish
    - name: engagement_quality
      dtype:
        class_label:
          names:
            '0': neutral
            '1': liked
            '2': disliked
    - name: content_characteristics
      dtype:
        class_label:
          names:
            '0': neutral
            '1': important
            '2': lol
    - name: vote_counts
      struct:
        - name: bearish
          dtype: int32
        - name: bullish
          dtype: int32
        - name: liked
          dtype: int32
        - name: disliked
          dtype: int32
        - name: important
          dtype: int32
        - name: lol
          dtype: int32
    - name: total_votes
      dtype: int32
    - name: source_url
      dtype: string
    - name: url
      dtype: string
    - name: total_tokens
      dtype: int64
  splits:
    - name: train
      num_bytes: 22639057
      num_examples: 23301
  download_size: 12118601
  dataset_size: 22639057
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
language:
  - en
tags:
  - DLT
  - Blockchain
  - Cryptocurrencies
  - Cryptocurrency
  - Bitcoin
  - Ethereum
  - XRP
  - Hedera
pretty_name: Distributed Ledger Technology (DLT) / Blockchain Sentiment News
size_categories:
  - 10K<n<100K

DLT-Sentiment-News

Dataset Description

Dataset Summary

DLT-Sentiment-News is a specialized sentiment analysis dataset for the Distributed Ledger Technology (DLT) domain. It addresses the lack of high-quality labeled data that captures domain-specific sentiment expressed by cryptocurrency community members.

The dataset contains 23,301 examples with 1.85 million tokens (average 79.51 tokens per example), spanning from January 2021 to May 2025. Each example includes cryptocurrency news headlines and descriptions with multi-dimensional sentiment labels crowdsourced from active community members on the CryptoPanic platform.

This dataset is part of the DLT-Corpus collection. For related datasets, see: https://huggingface.co/collections/ExponentialScience/dlt-corpus-68e44e40d4e7a3bd7a224402

Supported Tasks

  • Sentiment Analysis: Multi-dimensional sentiment classification for DLT and cryptocurrency content
  • Market Sentiment Studies: Analyzing how cryptocurrency communities perceive market-related news
  • Content Quality Assessment: Evaluating which content cryptocurrency users find valuable
  • Engagement Prediction: Understanding what drives positive or negative community engagement
  • Model Evaluation: Benchmarking domain-specific sentiment models

Languages

English (en)

Dataset Structure

Data Fields

Each example in the dataset contains the following fields:

  • title: Headline of the cryptocurrency news article
  • description: Brief description or summary of the article
  • text: Combined title and description text
  • timestamp: Date and time when the article was posted
  • market_direction: Sentiment about market direction (bullish, bearish, neutral)
  • engagement_quality: Community assessment of content importance (important, lol, neutral)
  • content_characteristics: User engagement type (liked, disliked, neutral)
  • vote_counts: Detailed breakdown of votes for each sentiment category
  • total_votes: Total number of community votes received
  • source_url: URL of the original news source
  • url: CryptoPanic URL for the article
  • total_tokens: Total number of tokens in the text

Label Distribution

The dataset includes three independent sentiment dimensions:

Market Direction:

  • bullish: Positive outlook on market/price movement
  • bearish: Negative outlook on market/price movement
  • neutral: Balanced or unclear market direction

Engagement Quality:

  • important: Content deemed significant by the community
  • lol: Content considered humorous or not serious
  • neutral: Standard content without strong quality signal

Content Characteristics:

  • liked: Positively received by the community
  • disliked: Negatively received by the community
  • neutral: Mixed or neutral community reception

Data Splits

This is a single corpus without predefined splits. Users should create their own train/validation/test splits based on their specific research needs. Consider temporal splits to avoid data leakage when studying market trends.

Dataset Creation

Curation Rationale

DLT-Sentiment-News was created to support sentiment analysis research in the DLT domain with data that reflects authentic community perspectives. Unlike general sentiment datasets, this captures:

  • Domain expertise: Labels from active cryptocurrency users with market knowledge
  • Multi-dimensional sentiment: Separate dimensions for market outlook, content quality, and engagement
  • Community consensus: Aggregated opinions from multiple users rather than single annotators
  • Market context: Sentiment tied to real cryptocurrency news and events

Source Data

Data Collection

The dataset was collected from CryptoPanic, a cryptocurrency news aggregation platform where community members vote on news articles across multiple sentiment categories.

Collection Details:

  • Data collected via CryptoPanic's free API between March and May 2025
  • Coverage period: January 2021 to May 2025
  • Only articles meeting minimum vote thresholds included (median minimum votes)
  • All content is publicly available news headlines and descriptions

Data Processing

The collection and labeling process involved:

  1. Article retrieval: Collecting news articles with community votes from CryptoPanic
  2. Vote normalization: Calculating vote percentages by total engagement for each article
  3. Minimum threshold filtering: Excluding articles with insufficient community engagement (below median votes)
  4. Percentile-based classification: Using 25th and 75th percentiles as boundaries to assign labels
  5. Quality control: Ensuring balanced representation across sentiment categories

Annotations

Annotation Process

Crowdsourced Community Voting:

  • Active cryptocurrency community members on CryptoPanic vote on news articles
  • Users select from predefined sentiment categories for each dimension
  • Votes reflect genuine community sentiment and domain expertise

Label Assignment:

  • Percentile-based classification mitigates popularity bias
  • Articles below 25th percentile labeled as negative category
  • Articles above 75th percentile labeled as positive category
  • Articles between percentiles labeled as neutral category
  • Applied independently for each sentiment dimension

Who are the annotators?

Active cryptocurrency community members on the CryptoPanic platform. These annotators possess domain expertise and genuine interest in DLT/cryptocurrency news, providing more relevant sentiment labels than general crowdworkers.

Personal and Sensitive Information

This dataset contains only publicly available cryptocurrency news headlines and descriptions. No personal or confidential data is included. Individual voter information is not included - only aggregated vote counts and percentages are retained.

Considerations for Using the Data

Social Impact of Dataset

This dataset can enable:

  • Positive impacts: Better understanding of cryptocurrency community sentiment, improved market analysis tools, advancement of domain-specific NLP research, more accurate sentiment detection
  • Potential negative impacts: Could be misused for market manipulation, creating misleading investment systems, or amplifying market volatility through automated trading

Researchers should implement appropriate safeguards and ethical guidelines when working with this data.

Discussion of Biases

Potential biases include:

  • Platform bias: Only reflects CryptoPanic users, not the entire cryptocurrency community
  • Language bias: Only English-language news articles are included
  • Temporal bias: More recent years may have different sentiment patterns than earlier periods
  • User bias: Active voters may have different perspectives than passive readers
  • Source bias: Certain news sources may be over-represented
  • Market condition bias: Dataset may reflect specific market cycles (bull/bear markets)
  • Geographic bias: English-speaking regions and news sources are over-represented

Other Known Limitations

  • Temporal lag: Not suitable for real-time sentiment analysis
  • Market volatility: Sentiment may change rapidly after news publication
  • Vote manipulation: Despite filters, coordinated voting cannot be completely ruled out
  • Context dependency: Headlines lack full article context, which may affect sentiment interpretation
  • Evolving terminology: Cryptocurrency terminology and memes evolve rapidly
  • Static snapshot: Current version does not capture ongoing sentiment changes

Additional Information

Dataset Curators

Walter Hernandez Cruz, Peter Devine, Nikhil Vadgama, Paolo Tasca, Jiahua Xu

Licensing Information

CC-BY-NC 4.0 (Creative Commons Attribution-NonCommercial 4.0 International)

This dataset is released under CC-BY-NC 4.0 for research purposes only.

Key terms:

  • Attribution required: You must give appropriate credit to the dataset creators
  • Non-commercial use: Commercial use is not permitted under this license
  • Academic research: The dataset is intended for academic and non-profit research

Legal basis:

  • Derived from publicly available CryptoPanic data with crowdsourced community annotations
  • Data collected via CryptoPanic's free API between March and May 2025
  • To the best of our knowledge, the Terms of Service at the time of collection (cryptopanic.com/terms/) contained no restrictions on academic research use or redistribution

For more information on CC-BY-NC 4.0, see: https://creativecommons.org/licenses/by-nc/4.0/

Acknowledgments

We thank the CryptoPanic platform and its community of users for making this dataset possible through their engagement and contributions to cryptocurrency news curation.

Citation Information

@article{hernandez2025dlt-corpus,
  title={DLT-Corpus: A Large-Scale Text Collection for the Distributed Ledger Technology Domain},
  author={Hernandez Cruz, Walter and Devine, Peter and Vadgama, Nikhil and Tasca, Paolo and Xu, Jiahua},
  year={2025}
}