Dataset Viewer
Auto-converted to Parquet Duplicate
business_id
string
rating
float64
is_open
int64
latitude
float64
longitude
float64
fips
string
pcpi
float64
poverty_rate
float64
median_household_income
float64
unemployment_rate
float64
avg_weekly_wages
int64
Pns2l4eNsfO8kk83dixA6A
5
0
34.426679
-119.711197
06083
82,736
14.9
127,676
6.1
1,402
mpf3x-BjTdTEA3yCZrAYPw
3
1
38.551126
-90.335695
29189
101,151
9.7
122,280
4.2
1,588
tUFrWirKiKi_TAnsVWINQQ
3.5
0
32.223236
-110.880452
04019
58,232
14
89,276
5.7
1,226
MTSW4McQd7CbVtyjqoe9mw
4
1
39.955505
-75.155564
42101
61,829
20.3
94,988
8.4
1,702
mWMc6_wTdE0EUBKIGXDVfA
4.5
1
40.338183
-75.471659
42091
101,172
6.9
155,405
4.4
2,003
CF33F8-E6oudUQ46HnavjQ
2
1
36.269593
-87.058943
47021
59,907
8.7
96,774
3.8
1,172
n_0UpQx1hsNbnPUSlodU8w
2.5
1
38.627695
-90.340465
29189
101,151
9.7
122,280
4.2
1,588
qkRM_2X51Yqxk3btlwAQIg
3.5
1
27.76659
-82.732983
12103
71,904
11.3
104,418
4.6
1,377
k0hlBqXX-Bt0vf1op7Jr1w
3
0
38.565165
-90.321087
29189
101,151
9.7
122,280
4.2
1,588
bBDDEgkFA1Otx9Lfe7BZUQ
1.5
1
36.208102
-86.76817
47037
92,496
12.3
109,900
4.6
1,702
UJsufbvfyfONHeWdvAHKjA
3.5
1
28.190459
-82.45738
12101
56,734
10.5
99,731
4.9
1,099
eEOYSgkmpB90uNA7lDOMRA
4
1
27.955269
-82.45632
12057
63,640
13.2
108,350
4.5
1,569
il_Ro8jwPlHresjw9EGmBg
2.5
1
39.637133
-86.127217
18097
70,999
15.6
88,195
5.1
1,779
jaxMSoInw8Poo3XeMJt8lQ
5
1
27.966235
-82.787412
12103
71,904
11.3
104,418
4.6
1,377
0bPLkL0QhhPO5kt1_EXmNQ
4.5
0
27.916116
-82.760461
12103
71,904
11.3
104,418
4.6
1,377
MUTTqe8uqyMdBl186RmNeA
4
1
39.953949
-75.143226
42101
61,829
20.3
94,988
8.4
1,702
rBmpy_Y1UbBx8ggHlyb7hA
4.5
1
32.229872
-110.972342
04019
58,232
14
89,276
5.7
1,226
M0XSSHqrASOnhgbWDJIpQA
4
1
29.941468
-90.129953
22071
67,403
23.1
96,964
7.8
1,399
8wGISYjYkE2tSqn3cDMu8A
3.5
1
29.981183
-90.254012
22051
63,448
17.1
88,950
5.9
1,258
ROeacJQwBeh05Rqg7F6TCg
4.5
1
39.943223
-75.162568
42101
61,829
20.3
94,988
8.4
1,702
qhDdDeI3K4jy2KyzwFN53w
4
1
39.91382
-86.105739
18097
70,999
15.6
88,195
5.1
1,779
kfNv-JZpuN6TVNSO6hHdkw
4
1
39.90432
-86.05308
18097
70,999
15.6
88,195
5.1
1,779
9OG5YkX1g2GReZM0AskizA
2.5
1
39.476117
-119.789339
32031
81,371
9.9
112,758
5
1,382
4iRzR7OaS-QaSXuvYxEGKA
4
0
36.24857
-86.719986
47037
92,496
12.3
109,900
4.6
1,702
PSo_C1Sfa13JHjzVNW6ziQ
5
1
40.273493
-74.987496
42017
92,846
6.7
146,979
4.6
1,286
noByYNtDLQAra9ccqxdfDw
3
1
34.420209
-119.70046
06083
82,736
14.9
127,676
6.1
1,402
tMkwHmWFUEXrC9ZduonpTg
4
0
36.159886
-86.773197
47037
92,496
12.3
109,900
4.6
1,702
QdN72BWoyFypdGJhhI5r7g
4
0
39.939825
-75.157447
42101
61,829
20.3
94,988
8.4
1,702
sqSqqLy0sN8n2IZrAbzidQ
3.5
1
36.464747
-86.659187
47147
56,484
9.9
95,497
3.5
1,052
fvWn8oXXwbj2l79cochZyw
5
1
43.616764
-116.285382
16001
72,588
8
118,286
3.1
1,386
Mjboz24M9NlBeiOJKLEd_Q
3
0
40.022466
-75.218314
42101
61,829
20.3
94,988
8.4
1,702
8sshLb4UU7emeUDvtJWnpA
4.5
1
40.041585
-75.484953
42029
108,215
6.2
165,327
3.8
1,891
kV_Q1oqis8Qli8dUoGpTyQ
3.5
1
40.006707
-75.289671
42091
101,172
6.9
155,405
4.4
2,003
w_AMNoI1iG9eay7ncmc67w
3
1
29.951359
-90.064672
22071
67,403
23.1
96,964
7.8
1,399
aPNXGTDkf-4bjhyMBQxqpQ
3.5
1
39.962582
-75.135657
42101
61,829
20.3
94,988
8.4
1,702
2xVsWBNFwZOxIOdd9Mwnww
2.5
0
40.029962
-75.630607
42029
108,215
6.2
165,327
3.8
1,891
mGFsPRHdE6SMV1gYQ6GzgQ
2
1
39.822176
-75.546007
10003
70,792
10.9
117,517
4.9
1,740
LcAozWCMLGjwRbokaJAKMg
4.5
1
38.804395
-89.949733
17119
60,115
11.1
99,163
4.7
1,158
fSCNwMtNNQY9QT69Cj9fiA
5
1
39.540155
-119.748395
32031
81,371
9.9
112,758
5
1,382
x1mhq4IpWctQOBM06dU8vg
1.5
1
39.787464
-86.251421
18097
70,999
15.6
88,195
5.1
1,779
ljxNT9p0y7YMPx0fcNBGig
3
1
38.896563
-90.186203
17119
60,115
11.1
99,163
4.7
1,158
lwItZ1Ck3KtpCgG4CPFmpQ
5
1
39.915478
-75.016973
34007
64,987
12.3
116,259
6.9
1,372
Kq51_lGAgAigqmENITTr-A
4
1
40.00687
-75.217262
42091
101,172
6.9
155,405
4.4
2,003
mglME3E7esPSpIF5bias8w
2.5
0
39.91527
-75.342681
42045
83,368
10.8
128,748
6.9
1,536
wghnIlMb_i5U46HMBGx9ig
3
0
32.132305
-110.999985
04019
58,232
14
89,276
5.7
1,226
lk9IwjZXqUMqqOhM774DtQ
3.5
0
36.148371
-86.798895
47037
92,496
12.3
109,900
4.6
1,702
bCBPXIVfVzBZBEpFu29dcg
5
1
38.517586
-90.021929
17163
59,412
13.4
91,047
5.7
1,115
ABxoFuzZy5mqQ8C5FJJajQ
5
1
40.028358
-75.238084
42091
101,172
6.9
155,405
4.4
2,003
Hwt3_mOEmU-t--ywcemnMg
3
0
27.808339
-82.636168
12103
71,904
11.3
104,418
4.6
1,377
REwfwz-_-CMQ7Np5UVi9Qg
5
1
39.9693
-86.165002
18057
99,456
4.8
158,092
2.8
1,476
0qNpTGTcqPwOLi2hADx4Xw
3
1
28.01036
-82.430042
12057
63,640
13.2
108,350
4.5
1,569
xM6LoUcnpDpMBzXs_7dXAg
3
1
39.856248
-75.69461
42029
108,215
6.2
165,327
3.8
1,891
txyXRytGjwOXvS8s4sc-WA
3
1
32.186794
-110.954765
04019
58,232
14
89,276
5.7
1,226
DQ7PyYlp2bX96WZa7TcaWQ
2.5
1
40.116179
-75.282525
42091
101,172
6.9
155,405
4.4
2,003
uI9XODGY_2_ieTE6xJ0myw
4
0
28.046203
-82.505053
12057
63,640
13.2
108,350
4.5
1,569
JgpnXv_0XhV3SfbfB50nxw
4
0
27.960514
-82.506127
12057
63,640
13.2
108,350
4.5
1,569
Si6LXSR9gvAbmgO5DzV2cw
2.5
0
29.875482
-90.04938
22051
63,448
17.1
88,950
5.9
1,258
seKihQKpGGnCeLuELRQPSQ
3.5
1
39.906295
-86.047463
18097
70,999
15.6
88,195
5.1
1,779
L_TT0BFmFwORAMaA83K54A
2.5
0
39.869911
-86.143577
18097
70,999
15.6
88,195
5.1
1,779
mjWvAkNqoA6Y5P03sDSzfA
2
1
27.99545
-82.508119
12057
63,640
13.2
108,350
4.5
1,569
qfWJmJ0g96eM_fWma3ja0g
3
0
39.961542
-75.603604
42029
108,215
6.2
165,327
3.8
1,891
uczmbBk5O3tYhGue13dCDg
4
1
29.958431
-90.065173
22071
67,403
23.1
96,964
7.8
1,399
n7AQvGvNHlmun3kqXeBKVQ
5
1
43.643494
-116.436
16001
72,588
8
118,286
3.1
1,386
eYxGFkxo6m3SYGVTh5m2nQ
4.5
1
32.250324
-110.903655
04019
58,232
14
89,276
5.7
1,226
lOP3HxdUTaq0eXhwR_KC-w
4
1
39.913292
-86.20083
18097
70,999
15.6
88,195
5.1
1,779
KWA2qtdwVEkMpd5soSKaGA
3.5
0
28.332601
-82.668107
12101
56,734
10.5
99,731
4.9
1,099
gbN4RuUiiBxQ2GBFQ2p3Cw
5
1
39.51397
-119.847204
32031
81,371
9.9
112,758
5
1,382
B2qqjCl_BNNnXvWWfpFiLA
1.5
1
36.103614
-86.816268
47037
92,496
12.3
109,900
4.6
1,702
7PDi_iyik3jraDAzWwwR4Q
1.5
1
39.749361
-75.643331
10003
70,792
10.9
117,517
4.9
1,740
8rb-3VYXE37IZix4yOdskw
2.5
1
39.696801
-74.999821
34015
66,061
8.4
131,250
5.2
1,152
9Rww8yE6Dm4dSMEq09nwXg
4.5
1
27.855347
-82.736308
12103
71,904
11.3
104,418
4.6
1,377
aCDY7vXYMs54EbYuQScsnQ
4.5
1
39.903697
-75.294981
42045
83,368
10.8
128,748
6.9
1,536
-4dYswJy7SPcbcERvitmIg
2.5
0
39.940403
-75.193297
42101
61,829
20.3
94,988
8.4
1,702
x9K0RfZaT_zlw6DklBDzjw
3.5
0
32.221667
-110.925833
04019
58,232
14
89,276
5.7
1,226
pJfh3Ct8iL58NZa8ta-a5w
4.5
1
28.196252
-82.380615
12101
56,734
10.5
99,731
4.9
1,099
cvP_vh_bOLbCY3eoY1Xw-A
4.5
0
39.958734
-86.016966
18057
99,456
4.8
158,092
2.8
1,476
7clCBgNbd-x2Wj96lZ6Mjw
4.5
1
39.875532
-86.082857
18097
70,999
15.6
88,195
5.1
1,779
ppFCk9aQkM338Rgwpl2F5A
3
1
39.954573
-75.194894
42101
61,829
20.3
94,988
8.4
1,702
NZ_bFJma7brQUfln5h1UAg
3.5
0
40.041629
-74.825821
34005
74,684
6.8
136,116
5.1
1,470
eMjnw_7wp-CscyNh6Lu0ZA
4.5
1
40.07233
-75.048483
42101
61,829
20.3
94,988
8.4
1,702
IDtLPgUrqorrpqSLdfMhZQ
4
1
34.414445
-119.690672
06083
82,736
14.9
127,676
6.1
1,402
sE6jSnvMts_MAn-b4OkMAw
4
1
38.716244
-89.88583
17119
60,115
11.1
99,163
4.7
1,158
YNjyv0gfOr2g8lbmUpTnKg
4.5
1
29.950647
-90.074427
22071
67,403
23.1
96,964
7.8
1,399
LhpPSrulqVeTyJeK2xydvQ
4.5
1
39.94669
-75.123327
34007
64,987
12.3
116,259
6.9
1,372
oaboaRBUgGjbo2kfUIKDLQ
4.5
1
36.162649
-86.775973
47037
92,496
12.3
109,900
4.6
1,702
-ZXYcCyDjj1QimnJyGtYtg
4.5
1
39.694993
-86.423071
18063
62,305
5.6
123,094
2.5
1,083
nUqrF-h9S7myCcvNDecOvw
4.5
1
34.41962
-119.677032
06083
82,736
14.9
127,676
6.1
1,402
vR9_bhoszcpXbB_APv6Xlw
5
1
39.770975
-86.071172
18097
70,999
15.6
88,195
5.1
1,779
RK6-cJ9hj53RzOlCBmpT-g
5
1
27.890814
-82.502346
12057
63,640
13.2
108,350
4.5
1,569
ZM46RDLXaFNo_z6t-j_L4w
3.5
1
40.113121
-74.914598
42017
92,846
6.7
146,979
4.6
1,286
pEm4xNCk8d0TF6A1gi-WDQ
3.5
1
38.613576
-90.322383
29189
101,151
9.7
122,280
4.2
1,588
J_ksUDPpzPwfTGtI4zTRnQ
4.5
1
29.955925
-90.062962
22071
67,403
23.1
96,964
7.8
1,399
knQ4vIgx-r85kjlWVVjcpQ
4.5
1
39.476518
-119.784037
32031
81,371
9.9
112,758
5
1,382
U2Tzy6J9aAAg9pzXsgdkvg
5
1
43.614194
-116.3525
16001
72,588
8
118,286
3.1
1,386
1MeIwdbTnZOBFCKOrgaxuw
3.5
0
38.617272
-90.212784
29510
63,316
20.1
83,494
5
1,703
8KMIT0NXu30Jz5Ojo5uxaw
5
1
40.072204
-74.96442
42017
92,846
6.7
146,979
4.6
1,286
jiLGdnf42eYftkqfU2ze1w
3.5
1
39.913836
-86.107907
18097
70,999
15.6
88,195
5.1
1,779
EuRGgOwJ0g1vTj2R04j37Q
2.5
1
38.601298
-89.989684
17163
59,412
13.4
91,047
5.7
1,115
TLZ3-eDPLhUzfsWO4ad6Ug
4
1
29.955415
-90.070062
22071
67,403
23.1
96,964
7.8
1,399
Dy91wdWkwtI_qgjAIZ0Niw
4
1
39.732089
-75.625673
10003
70,792
10.9
117,517
4.9
1,740
End of preview. Expand in Data Studio

Yelp Business Economic Indicators Dataset

Dataset Overview

...

Yelp Business Economic Indicators Dataset

Dataset Overview

This dataset combines business information from the Yelp Open Dataset with economic indicators for each business's county. The goal is to provide a structured dataset that can be used for predictive modeling, such as estimating the likelihood of a business remaining open or closed based on local economic conditions.

Each row corresponds to a single business from the Yelp dataset and includes:

  • Business attributes (rating, open/closed status, location)
  • County-level economic indicators from multiple official sources

Sources

  1. Yelp Open Dataset
    Yelp. Yelp Open Dataset. https://www.yelp.com/dataset
    Provides business-level information including ratings, open/closed status, latitude/longitude, and basic location metadata.

  2. Economic Indicators

    • BLS Quarterly Census of Employment and Wages (QCEW)
      U.S. Bureau of Labor Statistics. https://www.bls.gov/cew/
      Contains average weekly wages and other employment data at the county level.

    • FRED – Federal Reserve Economic Data
      Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/
      Provides per capita personal income (PCPI) at the county level.

    • U.S. Census Bureau SAIPE / ACS
      U.S. Census Bureau. https://www.census.gov/programs-surveys/saipe.html
      Contains poverty rates, median household income, and unemployment rates at the county level.


Dataset Columns

Column Description
business_id Unique Yelp business identifier
rating Yelp star rating (1–5)
is_open 1 if business is currently open, 0 if closed
latitude Latitude of business location
longitude Longitude of business location
fips County FIPS code
pcpi Per capita personal income (USD)
poverty_rate Poverty rate (%)
median_household_income Median household income (USD)
unemployment_rate County unemployment rate (%)
avg_weekly_wages Average weekly wage (USD)

Usage Notes

  • Some rows may contain missing values; consider dropping or imputing them depending on your analysis.
  • County-level economic indicators are mapped based on business latitude and longitude.
  • The dataset is designed for predictive modeling and exploratory data analysis.

License

This dataset is provided under the CC BY 4.0 License. Users must provide appropriate credit when using this dataset in research or applications.


Example Usage

import pandas as pd
from datasets import load_dataset

# Load Parquet locally
df = pd.read_parquet("yelp_fred_merged.parquet")
print(df.head())

# Or load from Hugging Face
from datasets import load_dataset
dataset = load_dataset("your-username/business-risk-prediction-dataset")
df = dataset['train'].to_pandas()
Downloads last month
19