Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowNotImplementedError
Message:      Cannot write struct type 'meta_info' with no child field to Parquet. Consider adding a dummy child field.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 712, in write_table
                  self._build_writer(inferred_schema=pa_table.schema)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 757, in _build_writer
                  self.pa_writer = pq.ParquetWriter(
                                   ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pyarrow/parquet/core.py", line 1070, in __init__
                  self.writer = _parquet.ParquetWriter(
                                ^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_parquet.pyx", line 2363, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'meta_info' with no child field to Parquet. Consider adding a dummy child field.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1847, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                                            ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 731, in finalize
                  self._build_writer(self.schema)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 757, in _build_writer
                  self.pa_writer = pq.ParquetWriter(
                                   ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pyarrow/parquet/core.py", line 1070, in __init__
                  self.writer = _parquet.ParquetWriter(
                                ^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_parquet.pyx", line 2363, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'meta_info' with no child field to Parquet. Consider adding a dummy child field.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
string
dataset
string
image
string
question
string
AUs
list
labels
list
description
string
meta_info
dict
6d4e93ef181b0ef6aaceac0c5257bd83
AffectNet-Test
81456263be241927c7a59a2646f88c2700ce4b7cba6094570ec2b10c.jpg
[]
[ "contempt" ]
{}
488937874c2b7c2ff896b4ccb8c4a0a1
AffectNet-Test
cfa0c679da3dbe9f01e92cdeda2da1065aa50e7bf0b3990ec335f726.jpg
[]
[ "neutral" ]
{}
002fc52c52f5f656a9d655594710d1a6
AffectNet-Test
83dac9d7eec7fb0bfef79b4d35ddc69a6f7fb458d3bffc4e78f33ad9.jpg
[]
[ "neutral" ]
{}
eb5b556795e1eb52c532ec951e69fd2b
AffectNet-Test
49e4872adc501d5e69b8898930bbd4f4e037022874b38881c6058aca.jpg
[]
[ "fear" ]
{}
5cfea67444109f70f18140b732de6576
AffectNet-Test
0745dd0386476ae193ca709034378c9207e48ae88cc8724127e98f1b.jpg
[]
[ "neutral" ]
{}
a82bf2a27b0b1e5ca717824da2aa7ddf
AffectNet-Test
f48738940564b9e3b0a8133adedc06642d50fdf46cea97da20572185.jpg
[]
[ "sadness" ]
{}
58e9d6b38a6420763d410d90905e6a3d
AffectNet-Test
e19dbf0be466873424844462d6c6371195436f11c20a9cc2bdb57829.jpg
[]
[ "disgust" ]
{}
ecfc456070688193607235c7f8a66552
AffectNet-Test
112568af14cc6f512975b24276d81b55080a9f8af223fe7666ce3805.jpg
[]
[ "anger" ]
{}
4b68a75bd8dac0559d579ebc4b9850c1
AffectNet-Test
2e9242f004ee675613838478fc4d2854c2e6a4406443e0d9b854f8ec.jpg
[]
[ "neutral" ]
{}
3ab105e9fbf53e1dff7130a5d085097d
AffectNet-Test
40e3adfe27564447d960163fa650063d3e1e10d8b393ec0d5798b968.jpg
[]
[ "contempt" ]
{}
028c84110374479a002c3e6f2fdd58a3
AffectNet-Test
3c028208c27c0be5fbe6a52738bebcbfb6c64f3220f523a84b267203.jpg
[]
[ "contempt" ]
{}
f5e9a51759d7cda85262fe73e4500116
AffectNet-Test
89e3c31e878a050478f6a3660f44ad11345e5aec40112f1b6e56aa1c.jpg
[]
[ "anger" ]
{}
2a0879e0b8465b9cc74928cf954622da
AffectNet-Test
8e47f4d4ff8c99174ee99943d89074e2679d768e2366dafe4414eaea.jpg
[]
[ "happiness" ]
{}
78d13498f015ec75189dec699095db9c
AffectNet-Test
a24590eb71d1310ebccafe92492758fc0c44904cc2d8cc2d9e6b7f9b.jpg
[]
[ "fear" ]
{}
890c8dc224bf800bbe58b151c0deaee1
AffectNet-Test
013edf18733973974937520ada4ed1688fa853aeeee96112df9b1ea3.jpg
[]
[ "sadness" ]
{}
ea6809e180665cb9ae00166a15844728
AffectNet-Test
87c37a268a173e5c92d4be9c783936f9af5cfb450a6348f38c9c25a1.jpg
[]
[ "contempt" ]
{}
fdef40980bad1df0e6799de9fe231756
AffectNet-Test
fbbca96828e14bffa69df284f984820bd4d723e3d9a1cbafe857c36b.jpg
[]
[ "fear" ]
{}
5850d7793da539b74e812cbce36b7e29
AffectNet-Test
62bf160444af2d228bfaac4ed287505d301cb2d4a453bdf3de84bf38.jpg
[]
[ "sadness" ]
{}
f402a606d9f3c909d5d5d8461c2594b5
AffectNet-Test
6a118153b24858035a69b5f87579ddece27686dbc9f5714ba549a282.jpg
[]
[ "fear" ]
{}
9ec86682745edf0a962d0ac25a67cb24
AffectNet-Test
53c9013f17bdbfecb8e43fcbb18e3ecf9479a0afc02d42c360c4c40c.jpg
[]
[ "sadness" ]
{}
5ba19fab44f3e232f4624c599a4618ce
AffectNet-Test
d4f3c4b50b55e9bdfa3c241789625764c989cc86a957e850fe083f63.jpg
[]
[ "sadness" ]
{}
a355384df5ac2abc4c221cc9872e55cd
AffectNet-Test
fa7596e96d7cb04dee33b39bfd78d3df4a03c52134a0e8cb8b2f87ff.jpg
[]
[ "contempt" ]
{}
feb793d55791e0f10b32ca2a237789a6
AffectNet-Test
5a4ce4a6dc3f278260ca1d552e27a752c8e4cdfe01bf476350fff84a.jpg
[]
[ "surprise" ]
{}
8053cc87d12b71e73ab6f3979df6bd8e
AffectNet-Test
6bc300b2ad8cf12d92cb1f033be26adf1381b957ac196ff4ba60d44b.jpg
[]
[ "neutral" ]
{}
23d677d5bc14e95b863da942507f84bb
AffectNet-Test
36d9ed6bc5241b6224466d9014990d385baf4a3a19668c43d76ff04b.jpg
[]
[ "contempt" ]
{}
bf9607905cc8e4d90508fdbd3a7e0746
AffectNet-Test
71ef30c7ffa878ef2fd6a4cd07a5d8ff0f66d533e64d6455853e06db.jpg
[]
[ "happiness" ]
{}
a41f0bd8754eafbb34134f73ac3ecf39
AffectNet-Test
c54c1c18568b0957b2d22514dfcff53ff3c6d996b0cd5d97ef8c314d.jpg
[]
[ "surprise" ]
{}
15d36a26697bcd727b416b0dd6a528a4
AffectNet-Test
975a7156dbc3efd8202a25b4f912de08a05d5b59e6db207f421bfec6.jpg
[]
[ "sadness" ]
{}
ed73e3337c34a3d22b68dfa00d4ff293
AffectNet-Test
73bf87ec93f2e71314651c3bac55b4931ea543144b4729db95590ec6.jpg
[]
[ "disgust" ]
{}
5ce392a26d5847ac62ba25e81bf26251
AffectNet-Test
10d3e8fe4d9296e496d0ca2819e99ef31330e7daa798e12ca22dc27b.jpg
[]
[ "contempt" ]
{}
ee05a64bf7090bca4a16985c0804bec0
AffectNet-Test
528b5890495bcd83261f69f3026bb736096ee3a578fc743471897457.jpg
[]
[ "sadness" ]
{}
766a7feb8dbf312e67d8d2f409cdb37d
AffectNet-Test
32b263ef793b602dc01068d34f70298672f0665bd636b7540ab98726.jpg
[]
[ "contempt" ]
{}
85bd5f200be8e5b7af81d76fa908fcd2
AffectNet-Test
a7ef215231963078280f95f1a9dc892aa875868f112e946dee103142.jpg
[]
[ "surprise" ]
{}
92391b9dbeaceb27b06f6ba177848a4a
AffectNet-Test
d9634692dd9da634cdaa34419e450da6858e22f3cfd351dbeb869780.jpg
[]
[ "anger" ]
{}
516c89aea85a79db40ff2d0db825c34d
AffectNet-Test
6e9c6785ff6e55e9300b39488e8414497e1fc1f7a1acaa25a9a2b323.jpg
[]
[ "neutral" ]
{}
96cc9af95ea360b0a3ed2577709ad841
AffectNet-Test
d74c8f748b3ff7171e2ec6fb87a8249c9b2e6f4388cd8850613a9f81.jpg
[]
[ "sadness" ]
{}
8928753d2d63837496e2832070437a54
AffectNet-Test
65b6c211a13f6457adbc864cd95fe7c4480e930fbab48ca490a2d23f.jpg
[]
[ "sadness" ]
{}
474d9c94dd8eaa0e9e1e023cb948fc82
AffectNet-Test
653a86452f47d4aacc38c673f7ca2ec5099b14e44bf36d194e5d14b8.jpg
[]
[ "happiness" ]
{}
f23e3f66a01c5d7cc24d5ec37b276c23
AffectNet-Test
12feec6cb6bb2e329a83dcf7cd4f87ff19eab7ad11b4f75c1183aef4.jpg
[]
[ "contempt" ]
{}
31f1cee4a6c0ba229409580437086cb4
AffectNet-Test
1dfb4453da36a0fb300d424d3f422ae78b2f2f0c9c6eb069af371179.jpg
[]
[ "contempt" ]
{}
aa2487a07e7ce9ba51d4e8cc99c708c6
AffectNet-Test
94e3ef41607eb95f5c95c0c1815536c9c956083095f0218be7abee6e.jpg
[]
[ "contempt" ]
{}
4fbf2559b2306f44d57b824f4d6e18cd
AffectNet-Test
6ae6c8329c31a2405a4b94d05429bc4c2dfe907abd4a566dc6869348.jpg
[]
[ "contempt" ]
{}
22e7e7fe6c884834582048074c1f3b0b
AffectNet-Test
14685ed3fd728158e2c18eb986a8c247c8145adf706734df1a7bf987.jpg
[]
[ "surprise" ]
{}
c8390cd7a645c63c5f9797545b09713c
AffectNet-Test
b12ad205be487d4c297b8052d1f0f3fa031913858dbe03951b1d19f3.jpg
[]
[ "anger" ]
{}
3bf880e3becff4ba8dbc1cca77d33d3c
AffectNet-Test
3cb72e71aafc9364661f349d16342f06a19167f55b52d662a2f7fd7c.jpg
[]
[ "surprise" ]
{}
c9c210e35085b4a147f0545ed5ddf4f1
AffectNet-Test
daaa4710b948c88b9187978c827d0b0f3af13809e0c6565a599bf03a.jpg
[]
[ "happiness" ]
{}
b765d60d6998b3c745fd3cf4429543ca
AffectNet-Test
a7a3d125815bf2611da9cd3ae21ee08f395b2ac9851bf92cdd11da3d.jpg
[]
[ "disgust" ]
{}
8c85d292c2172febd3b3538170c9fcba
AffectNet-Test
751b40bb32bb3a96024bf2a82244a012aded25fc19408d7c80ac23fe.jpg
[]
[ "disgust" ]
{}
cf38dbe3c67e684c50a03e00c91e5a6d
AffectNet-Test
8f701aabc87faf983b5142db1f8cf62509ea06c801b88f5c50cd8e26.jpg
[]
[ "happiness" ]
{}
e217cb90b66a3538325907ad6a7c827a
AffectNet-Test
6cccec080d41cf0b1c2db98d3b1e58a3818752fb82ad7947254387b6.jpg
[]
[ "fear" ]
{}
0090cb9b0183dda437447b014efd8570
AffectNet-Test
b94db0dfcc2ee22c5d927c95db72c41ba5b0ae115d2c73e1654f2413.jpg
[]
[ "surprise" ]
{}
fc2a9ad8ac4741ad5b503e9c00fbc72e
AffectNet-Test
b30c0c2cdc16890b44d46d114fd4f5f8aa775eade6b51536f1b3f762.jpg
[]
[ "disgust" ]
{}
c90385138f0b8f5dd0875d12be0850a2
AffectNet-Test
2e7679b8f0030dd82363d971db14d3678f236b06f0479c52d361efc5.jpg
[]
[ "surprise" ]
{}
02c1a4fb84a93ce00e6de59d93e2da86
AffectNet-Test
0e57de1d7d9aae92fa401eab076220cc4c75ec4d4eb086fd21cb5dcc.jpg
[]
[ "disgust" ]
{}
a2d433e8597975bc944ba78bdfbf28ef
AffectNet-Test
21c1f51a3056ed123e5fa19a4a59ad259a9b4fba06d0ce4b724bf230.jpg
[]
[ "contempt" ]
{}
2bffb2108a95b57f07a3baf2ccd79073
AffectNet-Test
c4f8afc26d293aaebe320d74afe459a6106f19cc89723eaa9a93874d.jpg
[]
[ "neutral" ]
{}
1fcd4c2608b3da2e68f0b5134ac7b5b3
AffectNet-Test
8074ac2088332aa569b5b2abb02d963b41b99eb985dd31bdee881586.jpg
[]
[ "neutral" ]
{}
958db0a99de1c332b109cdec20c3c0f6
AffectNet-Test
ad3d07c781e49b51b5822dcea5d9e5760de64304af75cefe144a5875.jpg
[]
[ "surprise" ]
{}
9af7369ed0592935bc5e4febcfe9de3d
AffectNet-Test
bd8bb80c353b526eb1a45a722ea179d879bed8b3ff56760b9e16b858.jpg
[]
[ "surprise" ]
{}
8c0f165a1b21f30915b3ef0f995caa5d
AffectNet-Test
cc7d78d1d7aa4033904bbcf6965518f7f4c749d54192a553513aedce.jpg
[]
[ "fear" ]
{}
6ca812770521c310ad8c94a774137f07
AffectNet-Test
b5a505bf7c69959e405c0cfff9aa25113b7d87bfdd8412943136e70a.jpg
[]
[ "happiness" ]
{}
60756a2c80f69af49f04ca554fa3a43c
AffectNet-Test
b2f94b3471f65b4765fee001840a7dad22813cbf5ae7ec35605d3194.jpg
[]
[ "surprise" ]
{}
aa6f1faa805a6f16e85aa50d506aa0a3
AffectNet-Test
29a06c26e44edf8fda7a49969280c89ff0b6bc98d0d40de4ce304afb.jpg
[]
[ "happiness" ]
{}
729d5a20411b26b84893d86bfaefcfed
AffectNet-Test
66f9f7a0dc2d6fd7128c113b5d68766a151da6e0859b2fd526238373.jpg
[]
[ "sadness" ]
{}
4f09c558bbc96cb0129781d4ed4f1232
AffectNet-Test
44e2c0b8546fd3dbdcc1e66c18d99e061cef3cd39471fd27d4d0e911.jpg
[]
[ "happiness" ]
{}
f0078fe205b0fa9d466ccfc1bc1adddc
AffectNet-Test
b31f3e39ae67672c5dd391acd18745aea1eeee3846ad8ecab00f8616.jpg
[]
[ "fear" ]
{}
64c83308b58bf434e07bdfefb75421f8
AffectNet-Test
165cb269e1d99c237673f11638c662b9d201e65027fb020d2eab47ec.jpg
[]
[ "fear" ]
{}
5a07b9b55478b19935fc9af112ed267e
AffectNet-Test
86b747e5e50c506e234d8c15ddec01fa964dce75306846bdd74d4ac9.jpg
[]
[ "surprise" ]
{}
fffb4820eb238bb7da19527b5e165f60
AffectNet-Test
054ef3f46e346c012bcbbd2927149e56e742897c536a3e940ca32f0c.jpg
[]
[ "happiness" ]
{}
84645547668891f0953c1ea29a00ef00
AffectNet-Test
5b861c2fe1b0f224dc2a0db6bc49d442983bc252e092cd3f698ef0d5.jpg
[]
[ "sadness" ]
{}
2ca3bf9ee8eeed957e5c4c5fb4c0a1e9
AffectNet-Test
035d6391a5bf15df1d04d0f4fe3fca9ab81cda2f24b8d1e2aefeeec1.jpg
[]
[ "sadness" ]
{}
9b9e9e8a761b6bac623f13bf30f76ced
AffectNet-Test
5f2d9569a3f71625072811c1cf37280136679905cb1ae1edfc33f6f6.jpg
[]
[ "sadness" ]
{}
149f1bc5d0137b451088e0ccc79bf981
AffectNet-Test
87f268cb06ee394d9074aafe2d9b1472d1417a81bda0610839592299.jpg
[]
[ "sadness" ]
{}
046608c3dd602cba0ebdd4bd4980400e
AffectNet-Test
00d903e5633843da0a935df41c212241edfcf242d916ad846be40b93.jpg
[]
[ "sadness" ]
{}
625c3548827fd02e81dc44e0561d475d
AffectNet-Test
b7d6d584a5fb0e08fea874355492f221ff8c82084532621fd1074979.jpg
[]
[ "sadness" ]
{}
f6f81411ad8866474900be412d79dfbf
AffectNet-Test
5d2a844dd1375bb9e9ac9c7ac31653dca3982193e062b86760213c90.jpg
[]
[ "sadness" ]
{}
1628306f53fafdc22c4ed6a6afed48f6
AffectNet-Test
cb2222566360015b0bc3941c04582347757c86b04adfe468ccb24608.jpg
[]
[ "fear" ]
{}
3afc1f94193a107003a1f347a9dfafaf
AffectNet-Test
0e03a26950a7b2166217c082d841aa446a37b3e6a078f1428c11082c.jpg
[]
[ "happiness" ]
{}
3de5a4b3ac7e01d7d210b197cbb53d62
AffectNet-Test
06685236923f9c9e4fa7b3d819ff4164a5e806ecc79277dc1089d176.jpg
[]
[ "happiness" ]
{}
cba8bb866f7f9a5bd31762d9ea1b29cf
AffectNet-Test
588768c48827515bb7b1bbfc7dcc857a8251b32a6b1f1821c26ce3b1.jpg
[]
[ "sadness" ]
{}
0497a4fd2958a312e1b8243e9d70a273
AffectNet-Test
218318ae092e2debd4f7f0c571cad790d391353490fbf7441fccd906.jpg
[]
[ "neutral" ]
{}
fb0423506fb8428f134eaec236355d3e
AffectNet-Test
a00884c30b48d45d67c22b200312fae514884cb10094d97ce0e4be97.jpg
[]
[ "anger" ]
{}
5df71e00128d08c2272ffced69df9664
AffectNet-Test
3288d3e27a2cb918da0bec7bee0eb82e2681f30caa3affdc8fc5accd.jpg
[]
[ "fear" ]
{}
bda946ff083c3221d23ea8a31aa5e043
AffectNet-Test
307708a119c3d729255459438c6f4c052059796b569d10d513887535.jpg
[]
[ "happiness" ]
{}
e6479b706076beb62d3f23c38ee66e97
AffectNet-Test
d892f6a7dfeebc7b323e9da2849e8fed78663e20537476681a4dab1b.jpg
[]
[ "surprise" ]
{}
a67ac850889a1c826adde764c825162a
AffectNet-Test
b206bee66f057f680a19363d50cf677a8d97a18288ca17ca477ef659.jpg
[]
[ "happiness" ]
{}
b36d3e737e150ffce02f476da6404d39
AffectNet-Test
ee7d79554e79df1aa460bcfd60c89757d0bafe6bebea035330926aa1.jpg
[]
[ "neutral" ]
{}
4bbff8aed8bcb645c9327c63241c7a63
AffectNet-Test
b08b98291a6a5955b9156713b24f30d072c4117de58ce83f9e18736c.jpg
[]
[ "sadness" ]
{}
5298f2a4dfcdaad42caab50b20356182
AffectNet-Test
734e6b4313e7289529f09b383e5cc20469c55e7879ef89859dc952f7.jpg
[]
[ "disgust" ]
{}
3b28ccbdeebe54b8571980922782f35b
AffectNet-Test
e37477a4b4bb77ca239aad48d71e2c4abea26682991ff1e2486756c3.jpg
[]
[ "contempt" ]
{}
1f4363421e192b155ed3f50c50b517a3
AffectNet-Test
263169de35771d1aea0898aa5e98793a1a17abcdd574153b9baaefd6.jpg
[]
[ "neutral" ]
{}
c853207c57a194bb35f95fe6e0238d9b
AffectNet-Test
808a8e3893284f3466832675745824292df15618216ddcfbabbd3adf.jpg
[]
[ "happiness" ]
{}
ebeb4154811fa8e9e823b66c609eda5c
AffectNet-Test
ec3c33a9430b7b5a4df132e3f68dcb3f763f02b2c93fcfc1a0501714.jpg
[]
[ "anger" ]
{}
b6a15d5119eb4b1fe584866e815b8ce3
AffectNet-Test
f733394025150ac8aea94ff857cbe4cc2679683f69f3ac30c0a5ba81.jpg
[]
[ "anger" ]
{}
c19a23b281823b5cc2d02ab2103c3a6d
AffectNet-Test
d549c4b0edd8187fc4def5e22493ab94cce389d431ce2d09f5ca19d5.jpg
[]
[ "surprise" ]
{}
ba95c8fd1da9414bdfc632e74189ed79
AffectNet-Test
b890ab30dbecbdc97ea62d0b198712d830cceb679c7fb54995d6a83c.jpg
[]
[ "disgust" ]
{}
5b1d5e9326e78575d6a5652ce8082770
AffectNet-Test
761b60f97cedc8020c7d14f95ff9f876db4e0399be9eff704930e5ee.jpg
[]
[ "disgust" ]
{}
0f00b398a74c0d177621471bc89848a8
AffectNet-Test
73480034c65b831c7bc65b61fc77db3a49349e4607975959d21d3cfc.jpg
[]
[ "disgust" ]
{}
0d8dcab2e423b06d5fb935f8fdf23cc6
AffectNet-Test
42b19edf5c1564fa18b05ff9e64232dcb337a9382ba2e09acf5772fc.jpg
[]
[ "happiness" ]
{}
4298de454f1c3fb18745300c58554dad
AffectNet-Test
ca44f7f1d7c986d9ec92a7140b5cad905203371a711df494ed6f5ff4.jpg
[]
[ "neutral" ]
{}
End of preview.

[AAAI 2026] Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis

Dataset Summary

FEA-20K is a large-scale, fine-grained dataset for Facial Emotion Analysis (FEA), containing approximately 20,000 samples. It was created using the novel Facial-R1 framework, a three-stage training process designed to align reasoning and recognition in Vision-Language Models.

The dataset is built to support explainable AI by breaking down emotion analysis into three distinct but interrelated sub-tasks. It was generated with a low-cost iterative process, starting from only 300 high-quality seed samples and using reinforcement learning to synthesize a large, high-quality corpus.

Supported Tasks

The dataset is designed to benchmark models on three core tasks:

  • Facial Emotion Recognition: Classifying the primary emotion of a facial image (e.g., "disgust", "happiness").
  • Facial Action Unit (AU) Recognition: Detecting the presence of specific facial muscle movements (e.g., AU4: brow lowerer).
  • AU-based Emotion Reasoning: Generating natural language explanations that link the detected AUs to the final emotion prediction, explaining why a certain emotion was recognized.

Dataset Structure

  • Total Samples: ~20,000
  • Training Set: 17,737 samples automatically constructed via the Facial-R1 synthesis strategy.
  • Test Set: 1,688 high-quality samples that have been manually verified for accuracy.

Citation

If you use this dataset in your research, please cite the original paper:

@misc{wu2025facialr1aligningreasoningrecognition,
      title={Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis}, 
      author={Jiulong Wu and Yucheng Shen and Lingyong Yan and Haixin Sun and Deguo Xia and Jizhou Huang and Min Cao},
      year={2025},
      eprint={2511.10254},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2511.10254}, 
}
Downloads last month
77