File size: 8,773 Bytes
b5beb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import json
import os
from datetime import datetime
import subprocess
import logging

full_datasets = {
    "MathVista_MINI": ["train_prompt_sampling"],
    "MathVision": ["train_prompt_greedy"],
    "MathVerse_MINI": ["train_prompt_greedy"],
    "MMMU_DEV_VAL": ["origin_prompt_greedy"],
    "MMStar": ["train_prompt_greedy"],
    "DynaMath": ["train_prompt_greedy"],
    "WeMath": ["train_prompt_greedy"],
    "TextVQA_VAL": ["origin_prompt_greedy"],
    "MMVet": ["origin_prompt_greedy"],
    "MMDocBench": ["origin_prompt_greedy"],
    "AI2D_TEST": ["origin_prompt_greedy"],
    "HallusionBench": ["origin_prompt_greedy"],
    "MMBench_DEV_EN_V11": ["origin_prompt_greedy"],
    "OCRBench": ["origin_prompt_greedy"],
    "DocVQA_VAL": ["origin_prompt_greedy"],
    # "EMMA-mini": ["train_prompt_sampling"],
    "EMMA": ["train_prompt_sampling"],
    # "DocVQA_TEST": ["origin_prompt_greedy"],
    # "MMBench_TEST_EN_V11": ["origin_prompt_greedy"],
}

settings = {
    "train_prompt_sampling": {
        "use_reasoning_prompt": 2,
        "do_sample": True,
        "top_p": 1,
        "top_k": -1,
        "temperature": 1,
    },
    "train_prompt_greedy": {
        "use_reasoning_prompt": 2,
        "do_sample": True,
        "top_p": 0.001,
        "top_k": 1,
        "temperature": 0.01,
    },
    "origin_prompt_greedy": {
        "use_reasoning_prompt": 0,
        "do_sample": True,
        "top_p": 0.001,
        "top_k": 1,
        "temperature": 0.01,
    },
}


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--run_name", type=str, required=True, help="Name of the run")
    parser.add_argument("--gpus", type=int, default=8, help="Number of GPUs to use")
    parser.add_argument("--path", type=str, required=True, help="Path to the model")
    parser.add_argument(
        "--dataset", type=str, nargs="+", required=True, help="List of datasets to use"
    )

    parser.add_argument(
        "--min_pixels", type=int, default=3136, help="Minimum number of pixels"
    )
    parser.add_argument(
        "--max_pixels", type=int, default=12845056, help="Maximum number of pixels"
    )
    parser.add_argument(
        "--max_new_tokens", type=int, default=2048, help="Maximum number of new tokens"
    )

    args = parser.parse_args()
    assert len(args.dataset), "--dataset should be a list of datasets"

    datasets = args.dataset
    if len(args.dataset) == 1 and args.dataset[0] == "full":
        datasets = list(full_datasets.keys())

    for dataset in datasets:
        assert (
            dataset in full_datasets
        ), f"Dataset {dataset} is not in the list of available datasets: {list(full_datasets.keys())}"
    
    print("Datasets to be used:", datasets)
    print("Run name:", args.run_name)
    print("Number of GPUs:", args.gpus)
    print("Model path:", args.path)
    print("Minimum pixels:", args.min_pixels)
    print("Maximum pixels:", args.max_pixels)
    print("Maximum new tokens:", args.max_new_tokens, flush=True)

    for dataset in datasets:
        assert isinstance(full_datasets[dataset], list)
        for setting in full_datasets[dataset]:
            config = {
                "model": {
                    args.run_name: {
                        "class": "Qwen2VLChat",
                        "model_path": args.path,
                        "min_pixels": args.min_pixels,
                        "max_pixels": args.max_pixels,
                        "use_vllm": True,
                        "max_new_tokens": args.max_new_tokens,
                        **settings[setting],
                    },
                },
                "datasets": datasets,
            }

            current_datetime = datetime.now().strftime("%Y%m%d")
            save_dir = f"public_eval/{args.run_name}/{dataset}_{setting}/{current_datetime}"
            os.makedirs(save_dir, exist_ok=True)

            config_name = f"config.json"
            config_path = os.path.join(save_dir, config_name)
            with open(config_path, "w") as json_file:
                json.dump(config, json_file, indent=4)

            print(f"Start evaluating on {dataset}.")
            print(f"Eval config {setting}", flush=True)
            
            env_vars = os.environ.copy()
            env_vars["VLLM_USE_V1"] = "0"
            
            if dataset == "EMMA" or dataset == "EMMA-mini":
                command = [
                    "torchrun",
                    f"--nproc_per_node={args.gpus}",
                    "EMMA/generate_response.py",
                    "--dataset_name",
                    f"/root/LMUData/{dataset}",
                    "--model_path",
                    f"{args.path}",
                    "--output_path",
                    f"{save_dir}/results.json",
                    "--config_path",
                    "/user/konglingyu/VLMEvalKit/EMMA/configs/gpt.yaml",
                    "--strategy",
                    "CoT"
                ]

                stdout_file = os.path.join(save_dir, f"out.log")
                stderr_file = os.path.join(save_dir, f"err.log")

                with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr:
                    try:
                        print(f"Output redirected to {stdout_file}")
                        print(f"Errors redirected to {stderr_file}", flush=True)
                        
                        process = subprocess.Popen(
                            command, env=env_vars, stdout=stdout, stderr=subprocess.PIPE, text=True
                        )

                        for line in process.stderr:
                                print(line, end="")  # 输出到屏幕
                                stderr.write(line)  # 写入文件

                        # 等待命令完成
                        process.wait()

                        if process.returncode != 0:
                            print(f"Command failed with return code {process.returncode}. Check {stderr_file} for error details.", flush=True)
                            continue
                        
                        data = {}
                        for i in range(args.gpus):
                            assert os.path.exists(f"{save_dir}/results_{i}.json")
                            data.update(json.load(open(f"{save_dir}/results_{i}.json", "r")))
                        with open(f"{save_dir}/results.json", "w") as f:
                            json.dump(data, f, indent=4)
                        from EMMA.evaluation.evaluate import gen_true_false
                        from EMMA.evaluation.calculate_acc import gen_score
                        gen_true_false(f"{save_dir}/results.json")
                        gen_score(f"{save_dir}/results.json", f"{save_dir}/results_acc.json")
                    except Exception as e:
                        print(f"torchrun failed. Check {stderr_file} for error details.", flush=True)
            else:
                command = [
                    "torchrun",
                    f"--nproc_per_node={args.gpus}",
                    "run_for_bash.py",
                    "--config",
                    f"{config_path}",
                    "--data",
                    f"{dataset}",
                    "--verbose",
                    "--work-dir",
                    f"{save_dir}",
                ]

                stdout_file = os.path.join(save_dir, f"out.log")
                stderr_file = os.path.join(save_dir, f"err.log")

                with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr:
                    try:
                        print(f"Output redirected to {stdout_file}")
                        print(f"Errors redirected to {stderr_file}", flush=True)
                        
                        process = subprocess.Popen(
                            command, env=env_vars, stdout=stdout, stderr=subprocess.PIPE, text=True
                        )

                        for line in process.stderr:
                                print(line, end="")  # 输出到屏幕
                                stderr.write(line)  # 写入文件

                        # 等待命令完成
                        process.wait()

                        if process.returncode != 0:
                            print(f"Command failed with return code {process.returncode}. Check {stderr_file} for error details.", flush=True)
                    except subprocess.CalledProcessError as e:
                        print(f"torchrun failed. Check {stderr_file} for error details.", flush=True)


if __name__ == "__main__":
    if not os.path.exists("/root/LMUData"):
        os.symlink("/user/konglingyu/LMUData", "/root/LMUData")
    main()