File size: 8,773 Bytes
b5beb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import argparse
import json
import os
from datetime import datetime
import subprocess
import logging
full_datasets = {
"MathVista_MINI": ["train_prompt_sampling"],
"MathVision": ["train_prompt_greedy"],
"MathVerse_MINI": ["train_prompt_greedy"],
"MMMU_DEV_VAL": ["origin_prompt_greedy"],
"MMStar": ["train_prompt_greedy"],
"DynaMath": ["train_prompt_greedy"],
"WeMath": ["train_prompt_greedy"],
"TextVQA_VAL": ["origin_prompt_greedy"],
"MMVet": ["origin_prompt_greedy"],
"MMDocBench": ["origin_prompt_greedy"],
"AI2D_TEST": ["origin_prompt_greedy"],
"HallusionBench": ["origin_prompt_greedy"],
"MMBench_DEV_EN_V11": ["origin_prompt_greedy"],
"OCRBench": ["origin_prompt_greedy"],
"DocVQA_VAL": ["origin_prompt_greedy"],
# "EMMA-mini": ["train_prompt_sampling"],
"EMMA": ["train_prompt_sampling"],
# "DocVQA_TEST": ["origin_prompt_greedy"],
# "MMBench_TEST_EN_V11": ["origin_prompt_greedy"],
}
settings = {
"train_prompt_sampling": {
"use_reasoning_prompt": 2,
"do_sample": True,
"top_p": 1,
"top_k": -1,
"temperature": 1,
},
"train_prompt_greedy": {
"use_reasoning_prompt": 2,
"do_sample": True,
"top_p": 0.001,
"top_k": 1,
"temperature": 0.01,
},
"origin_prompt_greedy": {
"use_reasoning_prompt": 0,
"do_sample": True,
"top_p": 0.001,
"top_k": 1,
"temperature": 0.01,
},
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", type=str, required=True, help="Name of the run")
parser.add_argument("--gpus", type=int, default=8, help="Number of GPUs to use")
parser.add_argument("--path", type=str, required=True, help="Path to the model")
parser.add_argument(
"--dataset", type=str, nargs="+", required=True, help="List of datasets to use"
)
parser.add_argument(
"--min_pixels", type=int, default=3136, help="Minimum number of pixels"
)
parser.add_argument(
"--max_pixels", type=int, default=12845056, help="Maximum number of pixels"
)
parser.add_argument(
"--max_new_tokens", type=int, default=2048, help="Maximum number of new tokens"
)
args = parser.parse_args()
assert len(args.dataset), "--dataset should be a list of datasets"
datasets = args.dataset
if len(args.dataset) == 1 and args.dataset[0] == "full":
datasets = list(full_datasets.keys())
for dataset in datasets:
assert (
dataset in full_datasets
), f"Dataset {dataset} is not in the list of available datasets: {list(full_datasets.keys())}"
print("Datasets to be used:", datasets)
print("Run name:", args.run_name)
print("Number of GPUs:", args.gpus)
print("Model path:", args.path)
print("Minimum pixels:", args.min_pixels)
print("Maximum pixels:", args.max_pixels)
print("Maximum new tokens:", args.max_new_tokens, flush=True)
for dataset in datasets:
assert isinstance(full_datasets[dataset], list)
for setting in full_datasets[dataset]:
config = {
"model": {
args.run_name: {
"class": "Qwen2VLChat",
"model_path": args.path,
"min_pixels": args.min_pixels,
"max_pixels": args.max_pixels,
"use_vllm": True,
"max_new_tokens": args.max_new_tokens,
**settings[setting],
},
},
"datasets": datasets,
}
current_datetime = datetime.now().strftime("%Y%m%d")
save_dir = f"public_eval/{args.run_name}/{dataset}_{setting}/{current_datetime}"
os.makedirs(save_dir, exist_ok=True)
config_name = f"config.json"
config_path = os.path.join(save_dir, config_name)
with open(config_path, "w") as json_file:
json.dump(config, json_file, indent=4)
print(f"Start evaluating on {dataset}.")
print(f"Eval config {setting}", flush=True)
env_vars = os.environ.copy()
env_vars["VLLM_USE_V1"] = "0"
if dataset == "EMMA" or dataset == "EMMA-mini":
command = [
"torchrun",
f"--nproc_per_node={args.gpus}",
"EMMA/generate_response.py",
"--dataset_name",
f"/root/LMUData/{dataset}",
"--model_path",
f"{args.path}",
"--output_path",
f"{save_dir}/results.json",
"--config_path",
"/user/konglingyu/VLMEvalKit/EMMA/configs/gpt.yaml",
"--strategy",
"CoT"
]
stdout_file = os.path.join(save_dir, f"out.log")
stderr_file = os.path.join(save_dir, f"err.log")
with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr:
try:
print(f"Output redirected to {stdout_file}")
print(f"Errors redirected to {stderr_file}", flush=True)
process = subprocess.Popen(
command, env=env_vars, stdout=stdout, stderr=subprocess.PIPE, text=True
)
for line in process.stderr:
print(line, end="") # 输出到屏幕
stderr.write(line) # 写入文件
# 等待命令完成
process.wait()
if process.returncode != 0:
print(f"Command failed with return code {process.returncode}. Check {stderr_file} for error details.", flush=True)
continue
data = {}
for i in range(args.gpus):
assert os.path.exists(f"{save_dir}/results_{i}.json")
data.update(json.load(open(f"{save_dir}/results_{i}.json", "r")))
with open(f"{save_dir}/results.json", "w") as f:
json.dump(data, f, indent=4)
from EMMA.evaluation.evaluate import gen_true_false
from EMMA.evaluation.calculate_acc import gen_score
gen_true_false(f"{save_dir}/results.json")
gen_score(f"{save_dir}/results.json", f"{save_dir}/results_acc.json")
except Exception as e:
print(f"torchrun failed. Check {stderr_file} for error details.", flush=True)
else:
command = [
"torchrun",
f"--nproc_per_node={args.gpus}",
"run_for_bash.py",
"--config",
f"{config_path}",
"--data",
f"{dataset}",
"--verbose",
"--work-dir",
f"{save_dir}",
]
stdout_file = os.path.join(save_dir, f"out.log")
stderr_file = os.path.join(save_dir, f"err.log")
with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr:
try:
print(f"Output redirected to {stdout_file}")
print(f"Errors redirected to {stderr_file}", flush=True)
process = subprocess.Popen(
command, env=env_vars, stdout=stdout, stderr=subprocess.PIPE, text=True
)
for line in process.stderr:
print(line, end="") # 输出到屏幕
stderr.write(line) # 写入文件
# 等待命令完成
process.wait()
if process.returncode != 0:
print(f"Command failed with return code {process.returncode}. Check {stderr_file} for error details.", flush=True)
except subprocess.CalledProcessError as e:
print(f"torchrun failed. Check {stderr_file} for error details.", flush=True)
if __name__ == "__main__":
if not os.path.exists("/root/LMUData"):
os.symlink("/user/konglingyu/LMUData", "/root/LMUData")
main()
|