The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 6 new columns ({'label', 'i', 'u', 'Unnamed: 0', 'idx', 'ts'}) and 5 missing columns ({'timestamp', 'w', 'destination', 'state_label', 'source'}).
This happened while the csv dataset builder was generating data using
hf://datasets/WeiChow/DyGraphs_raw/CanParl/ml_CanParl.csv (at revision 961fa4edc995601219c1e5c6cb313691bcf37315)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Unnamed: 0: int64
u: int64
i: int64
ts: double
label: double
idx: int64
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 897
to
{'source': Value(dtype='int64', id=None), 'destination': Value(dtype='int64', id=None), 'timestamp': Value(dtype='float64', id=None), 'state_label': Value(dtype='int64', id=None), 'w': Value(dtype='int64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 6 new columns ({'label', 'i', 'u', 'Unnamed: 0', 'idx', 'ts'}) and 5 missing columns ({'timestamp', 'w', 'destination', 'state_label', 'source'}).
This happened while the csv dataset builder was generating data using
hf://datasets/WeiChow/DyGraphs_raw/CanParl/ml_CanParl.csv (at revision 961fa4edc995601219c1e5c6cb313691bcf37315)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
source
int64 | destination
int64 | timestamp
float64 | state_label
int64 | w
int64 |
|---|---|---|---|---|
383
| 352
| 0
| 0
| 6
|
410
| 352
| 0
| 0
| 6
|
675
| 352
| 0
| 0
| 6
|
466
| 352
| 0
| 0
| 6
|
119
| 352
| 0
| 0
| 6
|
148
| 352
| 0
| 0
| 2
|
203
| 352
| 0
| 0
| 6
|
52
| 352
| 0
| 0
| 2
|
341
| 352
| 0
| 0
| 2
|
79
| 352
| 0
| 0
| 6
|
522
| 352
| 0
| 0
| 6
|
411
| 352
| 0
| 0
| 2
|
157
| 352
| 0
| 0
| 6
|
535
| 352
| 0
| 0
| 6
|
710
| 352
| 0
| 0
| 6
|
711
| 352
| 0
| 0
| 6
|
5
| 352
| 0
| 0
| 6
|
80
| 352
| 0
| 0
| 2
|
456
| 352
| 0
| 0
| 6
|
718
| 352
| 0
| 0
| 6
|
380
| 352
| 0
| 0
| 6
|
504
| 352
| 0
| 0
| 6
|
355
| 352
| 0
| 0
| 6
|
217
| 352
| 0
| 0
| 6
|
642
| 352
| 0
| 0
| 6
|
216
| 352
| 0
| 0
| 6
|
609
| 352
| 0
| 0
| 6
|
704
| 352
| 0
| 0
| 6
|
409
| 352
| 0
| 0
| 6
|
57
| 352
| 0
| 0
| 6
|
565
| 352
| 0
| 0
| 2
|
707
| 352
| 0
| 0
| 6
|
102
| 352
| 0
| 0
| 6
|
455
| 352
| 0
| 0
| 6
|
230
| 352
| 0
| 0
| 2
|
467
| 352
| 0
| 0
| 6
|
281
| 352
| 0
| 0
| 6
|
733
| 352
| 0
| 0
| 6
|
526
| 352
| 0
| 0
| 6
|
362
| 352
| 0
| 0
| 6
|
602
| 352
| 0
| 0
| 6
|
173
| 352
| 0
| 0
| 6
|
468
| 352
| 0
| 0
| 6
|
691
| 352
| 0
| 0
| 6
|
365
| 352
| 0
| 0
| 2
|
400
| 352
| 0
| 0
| 6
|
661
| 352
| 0
| 0
| 6
|
538
| 352
| 0
| 0
| 6
|
517
| 352
| 0
| 0
| 6
|
14
| 352
| 0
| 0
| 6
|
649
| 352
| 0
| 0
| 6
|
681
| 352
| 0
| 0
| 6
|
138
| 352
| 0
| 0
| 6
|
591
| 352
| 0
| 0
| 6
|
182
| 352
| 0
| 0
| 6
|
342
| 352
| 0
| 0
| 6
|
65
| 352
| 0
| 0
| 6
|
135
| 352
| 0
| 0
| 6
|
379
| 352
| 0
| 0
| 6
|
166
| 352
| 0
| 0
| 6
|
194
| 352
| 0
| 0
| 6
|
596
| 352
| 0
| 0
| 6
|
391
| 352
| 0
| 0
| 2
|
397
| 352
| 0
| 0
| 6
|
427
| 352
| 0
| 0
| 6
|
450
| 352
| 0
| 0
| 6
|
110
| 352
| 0
| 0
| 6
|
629
| 352
| 0
| 0
| 6
|
113
| 352
| 0
| 0
| 6
|
241
| 352
| 0
| 0
| 6
|
344
| 352
| 0
| 0
| 6
|
412
| 352
| 0
| 0
| 6
|
401
| 352
| 0
| 0
| 2
|
592
| 352
| 0
| 0
| 6
|
512
| 352
| 0
| 0
| 6
|
496
| 352
| 0
| 0
| 6
|
701
| 352
| 0
| 0
| 6
|
7
| 352
| 0
| 0
| 6
|
671
| 352
| 0
| 0
| 6
|
197
| 352
| 0
| 0
| 6
|
333
| 352
| 0
| 0
| 6
|
662
| 352
| 0
| 0
| 6
|
562
| 352
| 0
| 0
| 6
|
600
| 352
| 0
| 0
| 6
|
253
| 352
| 0
| 0
| 9
|
713
| 352
| 0
| 0
| 9
|
595
| 352
| 0
| 0
| 9
|
343
| 352
| 0
| 0
| 9
|
571
| 352
| 0
| 0
| 9
|
674
| 352
| 0
| 0
| 9
|
111
| 352
| 0
| 0
| 9
|
142
| 352
| 0
| 0
| 9
|
184
| 352
| 0
| 0
| 9
|
360
| 352
| 0
| 0
| 9
|
64
| 352
| 0
| 0
| 9
|
572
| 352
| 0
| 0
| 9
|
331
| 352
| 0
| 0
| 9
|
196
| 352
| 0
| 0
| 9
|
325
| 352
| 0
| 0
| 9
|
31
| 352
| 0
| 0
| 9
|
license: apache-2.0 tags: - text - graph task_categories: - graph-ml language: - en datasets: format: csv
The dataset is dynamic graphs for paper CrossLink. The usage of this dataset can be seen in Github
π Introduction
CrossLink learns the evolution pattern of a specific downstream graph and subsequently makes pattern-specific link predictions. It employs a technique called conditioned link generation, which integrates both evolution and structure modeling to perform evolution-specific link prediction. This conditioned link generation is carried out by a transformer-decoder architecture, enabling efficient parallel training and inference. CrossLink is trained on extensive dynamic graphs across diverse domains, encompassing 6 million dynamic edges. Extensive experiments on eight untrained graphs demonstrate that CrossLink achieves state-of-the-art performance in cross-domain link prediction. Compared to advanced baselines under the same settings, CrossLink shows an average improvement of 11.40% in Average Precision across eight graphs. Impressively, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
Format
Please keep the dataset in the fellow format:
| Unnamed: 0 | u | i | ts | label | idx |
|---|---|---|---|---|---|
idx-1 |
source node |
target node |
interaction time |
defalut: 0 |
from 1 to the #edges |
You can prepare those data by the code in preprocess_data folder
You can also use our processed data in huggingface
π Citation
If you find this work helpful, please consider citing:
@misc{huang2024graphmodelcrossdomaindynamic,
title={One Graph Model for Cross-domain Dynamic Link Prediction},
author={Xuanwen Huang and Wei Chow and Yang Wang and Ziwei Chai and Chunping Wang and Lei Chen and Yang Yang},
year={2024},
eprint={2402.02168},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2402.02168},
}
- Downloads last month
- 589
