| <p align="center"> | |
| <h3 align="center"><strong>GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency</strong></h3> | |
| <p align="center"> | |
| <a href="https://dylanorange.github.io" target='_blank'>Dongyue Lu</a> | |
| <a href="https://ldkong.com" target='_blank'>Lingdong Kong</a> | |
| <a href="https://tianxinhuang.github.io/" target='_blank'>Tianxin Huang</a> | |
| <a href="https://www.comp.nus.edu.sg/~leegh/">Gim Hee Lee</a> | |
| </br> | |
| National University of Singapore | |
| </p> | |
| </p> | |
| <p align="center"> | |
| <a href="https://dylanorange.github.io/projects/geal/static/files/geal.pdf" target='_blank'> | |
| <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-lightblue"> | |
| </a> | |
| <a href="https://dylanorange.github.io/projects/geal" target='_blank'> | |
| <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-blue"> | |
| </a> | |
| <a href="https://huggingface.co/datasets/dylanorange/geal" target="_blank"> | |
| <img src="https://img.shields.io/badge/Dataset-%20Hugging%20Face-yellow"> | |
| </a> | |
| </p> | |
| ## About 🛠️ | |
| **GEAL** is a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging pre-trained 2D models. | |
| To facilitate robust 3D affordance learning across diverse real-world scenarios, we establish two 3D affordance robustness benchmarks: **PIAD-C** and **LASO-C**, based on the test sets of the commonly used datasets PIAD and LASO. We apply seven types of corruptions: | |
| - **Add Global** | |
| - **Add Local** | |
| - **Drop Global** | |
| - **Drop Local** | |
| - **Rotate** | |
| - **Scale** | |
| - **Jitter** | |
| Each corruption is applied with five severity levels, resulting in a total of **4890 object-affordance pairings**, comprising **17 affordance categories** and **23 object categories** with **2047 distinct object shapes**. | |
| <div style="text-align: center;"> | |
| <img src="supp_benchmark_1.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;"> | |
| <img src="supp_benchmark_2.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;"> | |
| </div> | |
| ## Updates 📰 | |
| - **[2024.12]** - We have released our **PIAD-C** and **LASO-C** datasets! 🎉📂 | |
| ## Dataset and Code Release 🚀 | |
| We are excited to announce the release of our dataset and dataloader: | |
| - **Dataset**: Available in the `PIAD-C` and `LASO-C` files 📜 | |
| - **Dataloader**: Available in the `dataset.py` file 📜 | |
| Stay tuned! Further evaluation code will be coming soon. 🔧✨ | |