Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
The dataset viewer is not available for this split.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

https://i.ibb.co/Xr6B25kd/PB-logo-2-D-Elasto-Plasto-Dynamics.png https://i.ibb.co/FL7WhdWQ/2d-elasto-samples.gif

legal:
  owner: Safran
  license: cc-by-sa-4.0
data_production:
  type: simulation
  physics: 2D dynamic non-linear structural mechanics, non-linear non-local constitutive
    law
  simulator: OpenRadioss
num_samples:
  train: 1000
  test: 18
storage_backend: hf_datasets
plaid:
  version: 0.1.13.dev1+gb350f274a

This dataset was generated with plaid, we refer to this documentation for additional details on how to extract data from plaid_sample objects.

The simplest way to use this dataset is to first download it:

from plaid.storage import download_from_hub

repo_id = "channel/dataset"
local_folder = "downloaded_dataset"

download_from_hub(repo_id, local_folder)

Then, to iterate over the dataset and instantiate samples:

from plaid.storage import init_from_disk

local_folder = "downloaded_dataset"
split_name = "train"

datasetdict, converterdict = init_from_disk(local_folder)

dataset = datasetdict[split]
converter = converterdict[split]

for i in range(len(dataset)):
    plaid_sample = converter.to_plaid(dataset, i)

It is possible to stream the data directly:

from plaid.storage import init_streaming_from_hub

repo_id = "channel/dataset"

datasetdict, converterdict = init_streaming_from_hub(repo_id)

dataset = datasetdict[split]
converter = converterdict[split]

for sample_raw in dataset:
    plaid_sample = converter.sample_to_plaid(sample_raw)

Plaid samples' features can be retrieved like the following:

from plaid.storage import load_problem_definitions_from_disk
local_folder = "downloaded_dataset"
pb_defs = load_problem_definitions_from_disk(local_folder)

# or
from plaid.storage import load_problem_definitions_from_hub
repo_id = "channel/dataset"
pb_defs = load_problem_definitions_from_hub(repo_id)


pb_def = pb_defs[0]

plaid_sample = ... # use a method from above to instantiate a plaid sample

for t in plaid_sample.get_all_time_values():
    for path in pb_def.get_in_features_identifiers():
        plaid_sample.get_feature_by_path(path=path, time=t)
    for path in pb_def.get_out_features_identifiers():
        plaid_sample.get_feature_by_path(path=path, time=t)

For those familiar with HF's datasets library, raw data can be retrieved without using the plaid library:

from datasets import load_dataset

repo_id = "channel/dataset"

datasetdict = load_dataset(repo_id)

for split_name, dataset in datasetdict.items():
    for raw_sample in dataset:
        for feat_name in dataset.column_names:
            feature = raw_sample[feat_name]

Notice that raw data refers to the variable features only, with a specific encoding for time variable features.

Dataset Sources

Downloads last month
168