Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
512
512
text
stringlengths
1
60
αžŠαŸ‚αž› αž™αžΎαž„ αž”αžšαž·αž—αŸ„αž‚ αžαŸ‚ αž”αŸ‰αž»αžŽαŸ’αžŽαŸ„αŸ‡
αž€αŸ’αž“αž»αž„ αžŸαž”αŸ’αžαžΆαž αŸ αžŠαŸ†αž”αžΌαž„ αž€αŸ’αž“αž»αž„
αžŠαŸ„αž™ αžšαžΌαž” αž–αžŸαŸ‹ αž“αžΆαž‚
αž‚αžΈαž‘αžΌαž˜αŸ‰αŸ‚αžαŸ’αžš ( αž–αžΈ 2 αž‘αŸ… 174
αž€αŸ’αžšαŸ„αž™αž˜αž€ αž‚αŸ αž‘αŸ…αžšαžΆαž“ αž—αžΌαž˜αž· αž“αŸ… αžŸαž–αŸ’αžœ
a thoroughgoing idealist philosophy. The
αž™αžΎαž„ αž’αžΆαž… αž€αžαŸ‹αžŸαŸ†αž‚αžΆαž›αŸ‹ αž˜αžΆαž“ αž‡αžΆαž’αžΆαž‘αž·αŸ
: αž§αž”αž€αžšαžŽαŸ αžαž“αŸ’αžαŸ’αžšαžΈ αžαŸ’αž˜αŸ‚αžš
αž€αŸ’αžšαŸ„αž’ , αž‘αŸ’αžšαž„αŸ‹ αž”αŸ’αžšαž αžΆαžš …
αž€αŸ’αž“αž»αž„ αž αŸ† សវតី αž“αž‚αžš
αž™αž“αŸ’αžαž αŸ„αŸ‡ αž“αŸ… αž”αŸ’αžšαž‘αŸαžŸ αž’αžΆαžšαŸ‰αžΆαž”αŸŠαžΈ សអធ៊ូឌីត αž–αŸαž›
(the Sarabhu) αž“αž·αž„ αž˜αž αžΆαž“ αž‘αžΈ មហី
Yueng αž›αŸαž ៀ៩៣ αž”αŸ’αžš.αž€ αž—αžΌαž˜αž· 21070407
αžŠαŸ‚αž› αžŸαž–αŸ’αžœ αžαŸ’αž„αŸƒ αžαŸ’αžšαžΌαžœαž”αžΆαž“ αž”αŸ‚αž„αž…αŸ‚αž€
αžƒαžΎαž‰ αž‘αŸαž– αž’αžΆαžαŸ’αž˜αžΆαŸ†αž„ αž›αžΎαž€ αž‘αŸ…
αž€αŸ αž”αžšαž–αž› αžœαžΆαž™ αž‡αŸ’αžšαŸ‚αž€ αž…αžΌαž›αž‘αŸ… αŸ”
αž‘αž»αž€ αžαŸ‚ αž“αžΉαž„ αž”αŸ’αžšαž‚αŸαž“ αž—αž·αž€αŸ’αžαž» αž‘αžΆαŸ†αž„αž“αŸ„αŸ‡
αž‘αŸ αŸ” - αž–αžΈ
αžαŸ’αžšαžΌαžœ αž”αŸ’αžšαž‚αŸ† αž‘αžΎαž„ αžŠαŸ„αž™ αžαž“αŸ’αžαŸ’αžšαžΈ
αž–αŸαž› αž™αž”αŸ‹ αž αžΎαž™ αž”αžΎαž€ αž…αŸ†αž αžš
nature of mechanical ,
αžŸαž˜αŸ’αžŠαŸαž… αž–αŸ’αžšαŸ‡αž”αžšαž˜ αžαžαŸ’αžαž· αž™αžΆαž˜ αž αžΆαž…αž“αŸ’αž‘ αžšαžΆαž‡αžΆαž’αž·αžšαžΆαž‡
αž”αžΎαž€αž”αžš αž”αŸ’αžšαž—αŸαž‘ αž‚ αžαŸ’αžšαžΌαžœ αž˜αžΆαž“ αž”αŸαžŽαŸ’αžŽ
αž”αŸ’αžšαž’αžΆαž“ αž˜αž“αŸ’αž‘αžΈαžš ៨៧០ αžŠαŸ‚αž› αž‡αžΆ
Example ៩ Example Example
αž›αžΎαž€ αžŠαŸ†αž”αžΌαž„ αŸ” αž€αžΆαžšαžˆαŸ’αž›αžΆαž“αž–αžΆαž“ αžšαž”αžŸαŸ‹
αž‡αž½αž™ αž”αž·αž‘αž”αžΆαŸ†αž„ αž’αžΆαž”αžαŸ’αžαž· αžŸαž„αŸ’αžƒαžΆ αž‘αž·αžŸαŸαžŸ αž“αŸƒ
αž’αžΆαž”αžαŸ’αžαž· αž‘αž»αž€αŸ’αž€αžŠ αŸ” [
αž€αž˜αŸ’αž˜αžœαž·αž’αžΈ αžŽαžΆαž˜αž½αž™ αŸ” αž€αŸ’αž“αž»αž„
Choam 17110102 αž‚αŸ„αž€ αžαžΊαž„ Kouk
αž“αŸ’αŸ€αž˜ αž”αžΆαž“ αž“ αž›αžΎαž€ αž‘αž–αŸ
αžαŸ‚αž§αžŸαž—αžΆ αž†αŸ’αž“αžΆαŸ† ៑៩៩៣ αŸ” αž›αž‘αŸ’αž’αž•αž›
αž”αŸ’αžšαž€αž”αžšαžšαž”αžš αž‡αžΆ αž€αžŸαž·αž€αžš αž“αž·αž„
αž€αžΈαž‘αžΆ αž”αŸ’αžšαž™αž»αž‘αŸ’αž’ αž—αžΆαž‚ αž…αŸ’αžšαžΎαž“ αž€αŸ’αž”αžΆαž› αž‚αŸ’αžšαžΆαž”αŸ‹
ធអតូម αž’αŸαž›αžΈαž™αŸ‰αžΌαž˜ αž˜αžΆαž“ αž‘αŸ†αž αŸ† αž’αŸ†
A αž”αŸ’αžšαž»αžŸ 10-01-2002 Mr . B
αž…αž»αŸ‡ αž—αŸ’αž“αŸ‚αž€ αž’αžΆαž… αž‡αžΆ αž€αžΆαžšαž›αŸ’αž’
ដ៏ មហអ αžšαž»αž„αžšαžΏαž„ αž αžΎαž™ αž‘αžΈαžαžΆαŸ†αž„ αž“αŸ„αŸ‡
αž›αž€αŸ’αžαžŽαŸˆ αž‡αžΆ αž€αžΌαžŠ αž”αžΎαž€ αž…αŸ†αž 
αž–αžΈαž˜αž»αž αž–αŸ’αžšαŸ‡αž–αž“αŸ’αž›αžΆ αž‡αž›αŸ‹ αžŠαŸ†αžšαžΈ αž˜αžΆαž“ αž”αŸ’αžšαžΆαžŸαžΆαž‘
14-page call for action focusing on
αž–αžŽαŸŒ ស αžšαžΆαž‡ αž”αŸˆαžαŸ‚
Example Example Example ៀ Example Example
αž²αŸ’αž™ αž‡αžΆ αž•αŸ‚αž“αžŠαžΈ αž₯ត αž˜αžΆαž“
αž–αŸ’αžšαŸ‡ αž˜αžΆαž“ αž–αŸ’αžšαŸ‡αž—αžΆαž‚ αž›αž»αŸ‡ αž…αžΌαž›
៑. αžœαžΈαžšαž·αž™αž—αžΆαž– β€œ αž€αžΆαžšαž–αŸ’αž™αžΆαž™αžΆαž˜ αž€αŸ’αž“αž»αž„ αž€αžΆαžšαžŸαž·αž€αŸ’αžŸαžΆ
αžαŸƒ αž˜αž½αž™ αž€αŸ’αž”αžΆαž› αž“αž·αž™αžΆαž™
αž‘αžΈαŸ’ ខ αž…αŸ†αžŽαžΆαžαŸ‹αžαŸ’αž“αžΆαž€αŸ‹ αžˆαŸ’αž˜αŸ„αŸ‡
៑្៣៑ , αž…. ស
αŸ” αžαŸ’αž˜αžΈ αŸ— αž“αŸαŸ‡ αžŸαž·αž›αžΆαž…αžΆαžšαžΉαž€
αž’αŸ’αžœαžΎ αž€αžΆαžšαžœαž·αž“αž·αž…αŸ’αž†αŸαž™ αž±αŸ’αž™ αž˜αŸ’αž…αžΆαžŸαŸ‹ αžšαž”αžŸαŸ‹ αž…αžΆαž‰αŸ‹
αžƒαž»αŸ† αž€αž„αž‘αŸαž– αž›αžΎαž€ αž‘αŸ…
αž‘αž‘αž½αž›αž™αž€ αž‚αž˜αŸ’αž–αžΈαžš αž‡αžΆαž…αŸ’αžšαžΎαž“ αžšαž”αžŸαŸ‹
αžαŸ’αž–αžŸαŸ‹ αž€αŸ’αž“αž»αž„ αž€αžΆαžšαž–αŸ’αž™αžΆαž”αžΆαž› αž‡αŸ†αž„αžΊ αž“αž·αž„ αž…αŸαŸ‡
αž‘αžΎαž™ αŸ” αžŸαŸαž€αŸ’αžŠαžΈ αžŠαžΌαž… αžαžΆαž„αž›αžΎ αž“αŸαŸ‡
αž€αŸ†αž–αž»αž„ αž“αž·αž™αžΆαž™ αž²αŸ’αž™ αžŠαžΆαž…αŸ‹
αžŸαŸ†αžŠαŸ… αž‘αŸ… αž›αžΎ αžŸαž„αŸ’αž‚αŸ’αžšαžΆαž˜ αžŸαŸ†αž„αžΆαžαŸ‹ ទអវ
αž€αŸ’αž€αžαžΆ αž™αžΈ αž’αžΎαž αŸ’αž“αŸŽ (
αž‘αž·αžŸαŸ’αžœαžΆ αž™ ថអ αž₯αž‘αžΆαž“αž· ឯ αžœαŸ†
αžαŸ’αžšαžΌαžœαž”αžΆαž“ αžœαžΆαž™αžαž˜αŸ’αž›αŸƒ αž…αŸ†αž–αŸ„αŸ‡ αžœαžŠαŸ’αž 1.000
. Retrieved 2009-09-19. Shelton
αžŸαŸ’αžαžΆαž“αž—αžΆαž–αž’αžœαž·αž‡αŸ’αž‡αž˜αžΆαž“ αžŠαŸ„αž™ αžαŸ’αž›αŸ‡ αžαŸ’αžšαžΌαžœαž”αžΆαž“
αž’αžΆαž… αž’αŸ’αžœαžΎαž’αŸ„αž™ αž†αžΆαž”αž†αŸαŸ‡ αž”αžΆαž“ αŸ”
αž˜αž½αž™ αžŠαŸ‚αž› αž˜αžΆαž“ αž€αŸ†αž–αžΌαž›
αž‚αŸ αž€αŸ αž αŸ… ថអ αž‘αž“αŸ’αž›αŸ
] αž˜αŸ’αž“αžΆαž› αž—αž·αž€αŸ’αžαž» αžŠαŸ‚αž› αž αŸ… ថអ
αžŸαžΌαžœαŸ€αž ៑០,០០០ ( αŸ‘αž˜αž»αžΊαž“
αž”αŸ’αžšαžΆαž‡αžΆαŸ’αž‰ αž‚αž”αŸ’αž”αžΈ αž€αž“αŸ’αž‘αž€αŸ‹ αž€αž“αŸ’αž‘αŸαž‰
αž”αŸ‰αžΆαž‚αžΈαžŸαŸ’αžαžΆαž“ (ISI) αž”αžΆαž“ ដើរ
αžœαžαŸ’αžαž» αž₯αžŠαŸ’αž‹αžΆαžšαž˜αŸ’αž˜αžŽαŸ αž“αž·αž„ αž’αž“αž·αžŠαŸ’αž‹αžΆαžšαž˜αŸ’αž˜αžŽαŸ αž”αžΆαž“
αžˆαžΆαž“ αž‘αŸ…αžšαž€ αž—αžΆαž– αžŸαž»αžαžŸαžΆαž“αŸ’αžŠ αžŠαžΌαž…
αž“αŸαŸ‡ αž˜αžΆαž“ αž“αŸαž™ αž•αž„αžŠαŸ‚αžš ថអ αž“αžΉαž„
αž…αžΆαžšαžΈ αŸ€αž“αžΆαž€αŸ‹ αž‚αžΊ αž€αŸ’αž˜αŸαž„αžŸαŸ’αžšαžΈ αŸ’αž“αžΆαž€αŸ‹ αž”αŸ’αžšαž»αžŸ
αžŠαžΉαž„ ថអ αž˜αžΆαž“ αž€αžΌαž“
αžšαŸ€αž„ αžαŸ’αž›αž½αž“ αž…αž»αŸ‡ αŸ” αžšαžΆαž‡
αž‡αžΆ αž–αŸ’αžšαŸ‡αž’αž˜αŸ’αž˜ αžšαžΉαž‘αŸ’αž’αž· αž²αŸ’αž™ αž‘αŸ… αž–αž·αž“αž·αžαŸ’αž™
αž–αŸ’αžšαŸ‡αžšαžΆαž˜ αž–αŸ’αžšαŸ‡αžšαžΆαž˜ αžαŸ’αž›αžΆαž… αž‡αž˜αŸ’αž–αž»αžšαžΆαž‡
αž€αžΆαžšαžŸαž„αŸ’αž€αŸαž αž˜αž½αž™ αž“αŸƒ αžŸαŸ’αžαž„αŸ‹αžŠαžΆαžš
αžŸαž€αŸ’αžαž·αž™αžŸ αžŸαŸ„αŸ‡αž‘αžΎαž™ αŸ” αž“αžΆ αžαŸ‚
αž‡αžΆαž„ αž αžΎαž™ αž˜αžΆαž“ αžαŸ‚ αž€αŸ„αŸ‡ αž‡αŸ’αžœαžΆ
αžœαžΆαž™ αž‡αŸαžš αž˜αž€ αž›αžΎ
αž˜αž»αž“ αŸ” αž›αŸ„αž€ αž…αž“ αž’αžΌαž“αžΈαž›
αž€αžΆαž› αž›αž½αž… αž€αžΆαž› αž±αŸ’αž™ αž€αŸ†αžšαžΎαž€ αž₯αžšαž·αž™αžΆαž”αž
αž€αž»αŸ† αž±αŸ’αž™ វអ αž…αž„
αž”αž‰αŸ’αž…αžΌαž› αž‚αŸ’αž“αžΆ αž€αŸ’αž“αž»αž„ αž†αŸ’αž“αžΆαŸ† 1998 αž”αž“αŸ’αž‘αžΆαž”αŸ‹αž˜αž€
αžšαžΆαž‚αŸˆ αž‘αŸαžœαžΈ αžŸαŸ€αž αž•αŸ’αž€αžΆ αž’αž„αŸ’αž‚αžΆ αž”αž»αžŸαŸ’αž”
αžαŸ’αžšαžΌαžœαž”αžΆαž“ αž–αž½αž€ αžαŸ’αž˜αŸ‚αžš αž€αŸ’αžšαž αž˜
ស៊ី αžŸαŸ’αž˜αŸ… αž‘αžΆαž™ ថអ αž“αžΉαž„ αž€αžΎαž
ដើរ αž‘αŸ… ឈរ αž“αŸ…αž―
αž‘αž·αžŸ αžŠαž‘αŸƒ αŸ— αž‘αŸ€αž αž™αŸ„αž‚αžΈ
αž“αžΆαž„ αžαŸ’αžšαžΌαžœ αž˜αŸ’αžαžΆαž™ αžœαžΆαž™αžŠαŸ†αž…αŸ’αžšαŸ† αž‡αž·αŸ‡
( αžŸαž˜αžΆαž‡αž·αž€ αžαŸ’αž›αž½αž“ αžαŸ’αžšαžΌαžœ αž›αŸ‡αž”αž„αŸ‹ αž…αŸ„αž›
αž˜αž½αž™ αžŠαŸ‚αž› αž‘αžΆαž€αŸ‹αž‘αž„ αž“αžΉαž„ αžœαž‡αŸ’αžš αžŸαžαŸ’αžœ
αž€αžΆαžšαž„αžΆαžš αž’αž„αŸ’αž‚αž€αžΆαžš αž™αž»αžœαž‡αž“ αž€αŸ’αžšαž»αž˜ αž‡αž“ αž‡αžΆαžαž·
αžŠαŸ‚αž› αž‡αžΆ αžŸαž·αž”αŸ’αž”αž€αž˜αŸ’αž˜ αž˜αž½αž™ αŸ”
αž“αžΌαžœ αž—αŸαž™ αž“αŸ„αŸ‡ αž’αŸ†αž–αžΈ αž‘αžΈ αžŽαžΆαž˜αž½αž™
αž†αŸ’αž“αžΆαŸ† 1994"> αžŸαŸ†αž‘αŸαž„ - αž—αžΆαž–αž™αž“αŸ’αž αžŠαŸ„αž™
αž“αŸƒ αžšαžΆαž‡ αžœαž„αŸ’αžŸ αžαžΆαž„
( αžŠαŸ„αž™ αž€αžΆαž™ )
αž’αžΌαž‘αžΆαŸ†αž–αž·αž€ αž‘αžΈαž€αŸ’αžšαž»αž„ αž‘αž»αž„αžŠαŸ αž†αŸ’αž“αžΆαŸ† 1908
End of preview. Expand in Data Studio

Khmer-English Image Line Dataset πŸ“„

A large-scale synthetic dataset for training OCR models on Khmer and English text. This dataset contains 5 million high-quality synthetic images of text lines.

🎯 Dataset Overview

  • Total Images: 4,826,807
  • Languages: Khmer, English, and mixed
  • Format: Image-text pairs
  • Use Case: OCR model training

πŸ“‹ Data Fields

  • image: PIL Image of the text line
  • text: Ground truth text string

πŸ’Ύ Usage

Load with Hugging Face

from datasets import load_dataset

dataset = load_dataset("mrrtmob/km_en_image_line")

# Access an example
example = dataset['train'][0]
image = example['image']  # PIL Image
text = example['text']    # str

Train with Kiri OCR

kiri-ocr train \
    --hf-dataset mrrtmob/km_en_image_line \
    --epochs 50 \
    --batch-size 32

🎨 Dataset Features

  • Multiple Khmer and English fonts
  • Light and dark backgrounds
  • Realistic augmentations (noise, blur, rotation)
  • Variable text lengths (5-100 characters)

πŸ“š Citation

@dataset{km_en_image_line,
  author = {mrrtmob},
  title = {Khmer-English Image Line Dataset},
  year = {2026},
  publisher = {Blizzer},
  howpublished = {\url{https://huggingface.co/datasets/mrrtmob/km_en_image_line}}
}

βš–οΈ License

Apache License 2.0

πŸ”— Related

β˜• Support

Downloads last month
54

Models trained or fine-tuned on mrrtmob/km_en_image_line