Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Japanese
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
query-id
stringlengths
13
13
corpus-id
int64
0
97.1k
score
float64
1
1
ABC01-01-0003
0
1
ABC01-01-0004
20
1
ABC01-01-0005
40
1
ABC01-01-0006
60
1
ABC01-01-0008
80
1
ABC01-01-0009
100
1
ABC01-01-0010
120
1
ABC01-01-0011
140
1
ABC01-01-0012
160
1
ABC01-01-0014
180
1
ABC01-01-0015
200
1
ABC01-01-0017
220
1
ABC01-01-0018
240
1
ABC01-01-0019
260
1
ABC01-01-0020
280
1
ABC01-01-0021
300
1
ABC01-01-0022
320
1
ABC01-01-0026
340
1
ABC01-01-0027
360
1
ABC01-01-0029
380
1
ABC01-01-0030
400
1
ABC01-01-0031
420
1
ABC01-01-0032
440
1
ABC01-01-0035
460
1
ABC01-01-0036
480
1
ABC01-01-0037
500
1
ABC01-01-0038
520
1
ABC01-01-0039
540
1
ABC01-01-0040
560
1
ABC01-01-0041
580
1
ABC01-01-0042
599
1
ABC01-01-0044
619
1
ABC01-01-0045
639
1
ABC01-01-0046
659
1
ABC01-01-0047
679
1
ABC01-01-0049
699
1
ABC01-01-0051
719
1
ABC01-01-0052
739
1
ABC01-01-0053
759
1
ABC01-01-0055
779
1
ABC01-01-0056
799
1
ABC01-01-0057
819
1
ABC01-01-0059
839
1
ABC01-01-0060
859
1
ABC01-01-0061
879
1
ABC01-01-0062
898
1
ABC01-01-0063
918
1
ABC01-01-0064
938
1
ABC01-01-0065
958
1
ABC01-01-0066
978
1
ABC01-01-0070
998
1
ABC01-01-0071
1,010
1
ABC01-01-0072
1,030
1
ABC01-01-0074
1,050
1
ABC01-01-0075
1,070
1
ABC01-01-0076
1,090
1
ABC01-01-0077
1,110
1
ABC01-01-0078
1,130
1
ABC01-01-0080
1,150
1
ABC01-01-0081
1,170
1
ABC01-01-0082
1,190
1
ABC01-01-0084
1,210
1
ABC01-01-0086
1,230
1
ABC01-01-0087
1,250
1
ABC01-01-0091
1,270
1
ABC01-01-0092
1,290
1
ABC01-01-0093
1,310
1
ABC01-01-0094
1,330
1
ABC01-01-0095
1,350
1
ABC01-01-0097
1,370
1
ABC01-01-0098
1,390
1
ABC01-01-0100
1,410
1
ABC01-02-0001
1,420
1
ABC01-02-0002
1,435
1
ABC01-02-0003
1,455
1
ABC01-02-0004
1,475
1
ABC01-02-0005
1,495
1
ABC01-02-0006
1,515
1
ABC01-02-0007
1,534
1
ABC01-02-0009
1,554
1
ABC01-02-0010
1,574
1
ABC01-02-0012
1,594
1
ABC01-02-0013
1,614
1
ABC01-02-0016
1,634
1
ABC01-02-0017
1,654
1
ABC01-02-0018
1,674
1
ABC01-02-0021
1,694
1
ABC01-02-0022
1,713
1
ABC01-02-0023
1,733
1
ABC01-02-0024
1,751
1
ABC01-02-0025
1,771
1
ABC01-02-0026
1,791
1
ABC01-02-0027
1,811
1
ABC01-02-0028
1,831
1
ABC01-02-0029
1,851
1
ABC01-02-0030
1,871
1
ABC01-02-0031
1,891
1
ABC01-02-0032
1,911
1
ABC01-02-0033
1,037
1
ABC01-02-0034
1,931
1
End of preview. Expand in Data Studio

JaqketRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

JAQKET (JApanese Questions on Knowledge of EnTities) is a QA dataset that is created based on quiz questions.

Task category t2t
Domains Encyclopaedic, Non-fiction, Written
Reference https://github.com/kumapo/JAQKET-dataset

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["JaqketRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{Kurihara_nlp2020,
  author = {鈴木正敏 and 鈴木潤 and 松田耕史 and ⻄田京介 and 井之上直也},
  booktitle = {言語処理学会第26回年次大会},
  note = {in Japanese},
  title = {JAQKET: クイズを題材にした日本語 QA データセットの構築},
  url = {https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P2-24.pdf},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("JaqketRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 115226,
        "number_of_characters": 428294530,
        "num_documents": 114229,
        "min_document_length": 8,
        "average_document_length": 3748.995228882333,
        "max_document_length": 188424,
        "unique_documents": 114229,
        "num_queries": 997,
        "min_query_length": 16,
        "average_query_length": 50.70611835506519,
        "max_query_length": 98,
        "unique_queries": 997,
        "none_queries": 0,
        "num_relevant_docs": 997,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 989,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
490