Dataset Viewer
Auto-converted to Parquet Duplicate
SMILES
stringlengths
14
176
Ki
float64
-5
1.73
Nc1[nH]cnc2nnc(-c3ccc(Cl)cc3)c1-2
-2.69897
Cc1ccc(N2NC(=O)/C(=C/c3ccc(-c4ccc(C)c(Cl)c4)o3)C2=O)cc1C
-3.69897
O=C1NN(c2ccc(Cl)c(Cl)c2)C(=O)/C1=C\c1cccc(OCc2ccccc2)c1
-3
O=C1NN(c2ccc(I)cc2)C(=O)/C1=C\c1cc2c(cc1Br)OCO2
-3.39794
O=C1NN(c2ccc(I)cc2)C(=O)/C1=C\c1ccc(N2CCOCC2)cc1
-4.30103
O=C1NN(c2ccc(I)cc2)C(=O)/C1=C\c1ccc(I)cc1
-2.90309
O=C1NN(c2ccc(I)cc2)C(=O)/C1=C\c1ccccc1
-2.778151
O=C(Nc1ccccc1)Nc1nnc(Cc2ccccc2)s1
-4.763428
COc1cc(SC)ccc1C(=O)Nc1nnc(CCc2ccccc2)s1
-3.30103
O=C(Nc1nnc(CCc2ccccc2)s1)c1ccccc1I
-3.113943
O=C(Nc1nnc(CCc2ccccc2)s1)c1ccc(I)cc1
-2.60206
Cc1cc(-c2c(Cl)cccc2Cl)cc2nnc(Nc3ccc(OCCN4CCCC4)cc3)nc12
-1.292256
COc1cc2ncc(C#N)c(N[C@@H]3C[C@H]3c3ccccc3)c2cc1OC
-2.977724
N#Cc1cnc2cc(-c3ccc(CN4CCOCC4)cc3)ccc2c1N[C@@H]1C[C@H]1c1ccccc1
-2.477121
N#Cc1cnc2ccc(-c3ccc(CN)cc3)cc2c1N[C@@H]1C[C@H]1c1ccccc1
-2.886491
COc1cc2c(N[C@@H]3C[C@H]3c3ccccc3)c(C#N)cnc2cc1OCCCN1CCN(C)CC1
-1.643453
COc1cc2c(N[C@@H]3C[C@H]3c3ccccc3)c(C#N)cnc2cc1OCCCN1CCOCC1
-2.30103
COCCOc1cc2ncc(C#N)c(N[C@@H]3C[C@H]3c3ccccc3)c2cc1OC
-2.591065
COc1cc2c(N[C@@H]3C[C@H]3c3ccccc3)c(C#N)cnc2cc1OCCCc1cccnc1
-2.477121
COc1cc2ncc(C#N)c(N[C@@H]3C[C@H]3c3ccccc3)c2cc1OCCCc1cccnc1
-3.255273
COc1cc2ncc(C#N)c(N[C@@H]3C[C@H]3c3ccccc3)c2cc1OCCCN1CCOCC1
-3.255273
Cc1cc(-c2cc(N)ccc2Cl)cc2nnc(Nc3ccc(S(=O)(=O)NCCN4CCCC4)cc3)nc12
-1.20412
Cc1cc(-c2cc(O)ccc2Cl)cc2nnc(Nc3ccc(S(=O)(=O)C4CCNCC4)cc3)nc12
-0.612784
Cc1cc(-c2cc(O)ccc2Cl)cc2nnc(Nc3ccc(S(=O)(=O)CCCN4CCCC4)cc3)nc12
-0.946943
Cc1cc(-c2cc(O)ccc2Cl)cc2nnc(Nc3ccc(S(=O)(=O)N(C)CCN4CCCC4)cc3)nc12
0.124939
Cc1cc(-c2cc(O)ccc2Cl)cc2nnc(Nc3ccc(S(=O)(=O)NCCN4CCCC4)cc3)nc12
-0.50515
Cc1cc(-c2cc(O)ccc2Cl)cc2nnc(Nc3ccc(C(=O)N4CCNCC4)cc3)nc12
-0.921686
COc1ccc(CSc2nnc(NC(=O)c3ccccc3Cl)s2)cc1
-3.100371
O=C(Nc1nnc(SCc2ccccc2)s1)c1ccccc1Cl
-2.963788
O=C(Nc1nnc(SCc2cccc(Cl)c2)s1)c1ccccc1Cl
-2.880814
O=C(Nc1nnc(SCc2ccc(F)cc2)s1)c1ccccc1Cl
-2.608526
O=C(Nc1nnc(SCc2ccccc2)s1)c1ccc(Cl)cc1
-2.60206
O=C(Nc1nnc(SCc2cccc(Cl)c2)s1)c1ccc(F)cc1
-2.567026
O=C(Nc1nnc(SCc2cccc(F)c2)s1)c1ccccc1Cl
-2.434569
O=C(Nc1nnc(SCc2ccc(Br)cc2)s1)c1ccccc1Cl
-2.352183
O=C(Nc1nnc(SCc2cccc(F)c2)s1)c1ccc(Cl)cc1
-2.33646
O=C(Nc1nnc(SCc2ccc([N+](=O)[O-])cc2)s1)c1ccc(F)cc1
-2.322219
COc1ccc(CSc2nnc(NC(=O)c3ccc(F)cc3)s2)cc1
-2.290035
COc1ccc(CSc2nnc(NC(=O)c3ccc(Cl)cc3)s2)cc1
-2.276462
O=C(Nc1nnc(SCc2cccc(F)c2)s1)c1ccc(F)cc1
-2.222716
O=C(Nc1nnc(SCc2ccc(F)cc2)s1)c1ccc(Cl)cc1
-2.017033
O=C(Nc1nnc(SCc2ccc([N+](=O)[O-])cc2)s1)c1ccc(Cl)cc1
-1.963788
O=C(Nc1nnc(SCc2ccc(Br)cc2)s1)c1ccc(F)cc1
-1.94939
O=C(Nc1nnc(SCc2ccc([N+](=O)[O-])cc2)s1)c1ccccc1Cl
-1.919078
O=C(Nc1nnc(SCc2cccc(Cl)c2)s1)c1ccc(Cl)cc1
-1.863323
O=C(Nc1nnc(SCc2ccccc2)s1)c1ccc(F)cc1
-1.845098
O=C(Nc1nnc(SCc2ccc(Br)cc2)s1)c1ccc(Cl)cc1
-1.672098
Fc1ccc(C(Cl)Cn2ncc3c(NCc4cccc(Cl)c4)ncnc32)cc1
-2.079181
Fc1ccc(C(Cl)Cn2ncc3c(NCc4ccccc4F)ncnc32)cc1
-1.30103
Fc1ccc(C(Cl)Cn2ncc3c(NCc4cccc(F)c4)ncnc32)cc1
-2
Fc1ccc(CNc2ncnc3c2cnn3CC(Cl)c2ccc(F)cc2)cc1
-2.30103
Fc1ccc(C(Cl)Cn2ncc3c(NCc4ccccc4)ncnc32)cc1
-2.643453
Fc1ccccc1CNc1ncnc2c1cnn2CC(Cl)c1ccccc1
-2.863323
Fc1cccc(CNc2ncnc3c2cnn3CC(Cl)c2ccccc2)c1
-1.60206
Fc1ccc(CNc2ncnc3c2cnn3CC(Cl)c2ccccc2)cc1
-3.30103
Fc1ccc(C(Cl)Cn2ncc3c(NCc4ccccc4Cl)ncnc32)cc1
-2.30103
Fc1ccc(CNc2ncnc3c2cnn3CC(Cl)c2ccc(Cl)cc2)cc1
-1.90309
Clc1ccc(C(Cl)Cn2ncc3c(NCc4cccc(Cl)c4)ncnc32)cc1
-1.90309
Cc1nc(N)sc1-c1ccnc(Nc2cccc([N+](=O)[O-])c2)n1
-2.20412
Cc1cc(-c2c(Cl)cccc2Cl)cc2nnc(Nc3ccc(OCC[N+]4([O-])CCCC4)cc3)nc12
-0.30963
CSc1nc(NCCc2ccccc2)c2cnn(CC(Cl)c3ccccc3)c2n1
-3.863323
CSc1nc(NCc2ccccc2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.414973
CCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccccc1
-3.681241
CCCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccccc1
-3.079181
CCOCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccccc1
-3.176091
CCN(CC)c1nc(SC)nc2c1cnn2CC(Cl)c1ccccc1
-2.60206
CSc1nc(Nc2ccccc2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.60206
CSc1nc(Nc2cccc(F)c2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.60206
CSc1nc(NCCc2ccccc2F)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.60206
CCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccc(F)cc1
-2.755875
CCCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccc(F)cc1
-2.041393
CSc1nc(N2CCOCC2)c2cnn(CC(Cl)c3ccc(F)cc3)c2n1
-2.986772
CSc1nc(NCc2ccc(F)cc2)c2cnn(CC(Cl)c3ccc(F)cc3)c2n1
-2.342423
CSc1nc(NCc2ccccc2F)c2cnn(CC(Cl)c3ccc(F)cc3)c2n1
-2.531479
CSc1nc(NCCc2ccccc2)c2cnn(CC(Cl)c3ccc(F)cc3)c2n1
-2.30103
CSc1nc(Nc2cccc(F)c2)c2cnn(CC(Cl)c3ccc(F)cc3)c2n1
-2.342423
CCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccc(Cl)cc1
-2.60206
CCCCNc1nc(SC)nc2c1cnn2CC(Cl)c1ccc(Cl)cc1
-2.591065
CCN(CC)c1nc(SC)nc2c1cnn2CC(Cl)c1ccc(Cl)cc1
-2.477121
CSc1nc(N2CCOCC2)c2cnn(CC(Cl)c3ccc(Cl)cc3)c2n1
-2.69897
CCSc1nc(N(CC)CC)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.518514
CCCNc1nc(SCCC)nc2c1cnn2CC(Cl)c1ccccc1
-2.39794
CCCCNc1nc(SCCC)nc2c1cnn2CC(Cl)c1ccccc1
-2.718007
CCCSc1nc(N(CC)CC)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.447158
CCCSc1nc(NCc2ccccc2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2
CCCNc1nc(SC)nc2c1cnn2CC(Br)c1ccccc1
-2.944483
CCCCNc1nc(SC)nc2c1cnn2CC(Br)c1ccccc1
-2.50515
CCOCCNc1nc(SC)nc2c1cnn2CC(Br)c1ccccc1
-2.740363
CSc1nc(N2CCCC2)c2cnn(CC(Br)c3ccccc3)c2n1
-3.146128
CSc1nc(N2CCCCC2)c2cnn(CC(Br)c3ccccc3)c2n1
-2.944483
CSc1nc(N2CCOCC2)c2cnn(CC(Br)c3ccccc3)c2n1
-2.986772
CSc1nc(NCc2ccccc2)c2cnn(CC(Br)c3ccccc3)c2n1
-2.278754
CSc1nc(NCCc2ccccc2)c2cnn(CC(Br)c3ccccc3)c2n1
-2.431364
CCCNc1nc(N(C)C)nc2c1cnn2CC(Cl)c1ccccc1
-2.50515
CN(C)c1nc(N2CCOCC2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.447158
CN(C)c1nc(NCc2ccccc2)c2cnn(CC(Cl)c3ccccc3)c2n1
-2.20412
CC(C)(C)N1CN(c2ccc(Cl)cc2)C(N)=C2C=NN=C21
-2.716003
O=C(Nc1ncc(Cc2ccccc2)s1)c1cccs1
-1.954243
O=C(Nc1nnc(COc2ccccc2)s1)c1cccs1
-2.444045
O=C(Nc1nnc(Cc2ccccc2)s1)c1cccs1
-2.556303
End of preview. Expand in Data Studio

MoleculeACE ChEMBL1862 Ki

ChEMBL1862 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the Tyrosine-protein kinase abl1 target.

Characteristic Description
Tasks 1
Task type regression
Total samples 794
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
114