Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
user_id
int64
0
448k
item_id
int64
0
2.24M
domain_id
int64
0
6
ts
int64
0
10.7k
rating
float64
1
5
0
53
0
0
5
0
83
0
1
5
0
62
0
2
5
0
3,868
0
3
5
0
3,966
0
4
5
0
5,490
0
5
5
0
9,848
0
6
5
0
12,616
0
7
5
0
13,112
0
8
5
0
12,994
0
9
5
0
14,237
0
10
5
0
17,178
0
11
5
0
25,965
0
12
5
0
65,945
0
13
5
0
65,918
0
14
5
0
66,048
0
15
5
0
66,058
0
16
5
0
180,821
0
17
5
0
201,155
0
18
5
0
201,275
0
19
5
0
220,359
0
20
5
0
258,451
0
21
5
0
270,917
0
22
5
0
274,559
0
23
4
0
289,671
0
24
5
0
317,760
0
25
5
0
341,905
0
26
5
0
358,234
0
27
5
0
358,223
0
28
5
0
359,271
0
29
5
0
359,780
0
30
5
0
433,994
0
31
5
0
523,651
0
32
5
0
523,757
0
33
5
0
544,550
0
34
5
0
548,699
0
35
5
0
551,100
0
36
5
0
613,616
0
37
5
0
691,697
0
38
5
0
787,186
0
39
5
0
793,997
0
40
5
0
850,441
0
41
5
0
1,041,585
0
42
5
1
790,145
0
0
5
1
790,241
0
1
5
1
790,263
0
2
5
1
924,163
0
3
5
1
1,069,641
0
4
5
1
1,103,980
0
5
5
1
360,054
0
6
5
1
360,510
0
7
5
1
692,433
0
8
5
1
1,786,693
4
9
5
1
62
0
10
5
1
13,260
0
11
5
1
13,267
0
12
5
1
66,936
0
13
5
1
67,840
0
14
5
1
67,918
0
15
5
1
67,906
0
16
5
1
67,911
0
17
5
1
138,154
0
18
5
1
181,915
0
19
5
1
188,183
0
20
5
1
192,657
0
21
5
1
207,908
0
22
5
1
221,134
0
23
5
1
263,853
0
24
5
1
293,572
0
25
5
1
305,296
0
26
5
1
359,518
0
27
5
1
373,073
0
28
5
1
421,130
0
29
5
1
785,977
0
30
5
1
786,730
0
31
5
1
857,621
0
32
5
1
1,025,206
0
33
5
1
1,083,937
0
34
5
1
1,112,782
0
35
5
1
1,538,944
1
36
5
1
1,545,278
1
37
5
1
1,568,434
1
38
5
1
1,664,377
1
39
5
1
1,750,197
1
40
5
1
1,792,589
4
41
5
1
1,805,252
4
42
5
1
1,805,375
4
43
5
1
1,816,286
4
44
5
1
1,821,535
4
45
5
1
1,821,770
4
46
5
1
1,822,429
4
47
5
1
1,834,032
4
48
5
1
1,839,425
4
49
5
1
1,845,517
4
50
5
1
1,847,001
4
51
5
1
1,847,688
4
52
5
1
1,847,688
4
53
5
1
1,852,912
4
54
5
1
1,858,054
4
55
5
1
1,858,619
4
56
5
End of preview. Expand in Data Studio

Amazon User Multi-Domain Dataset —— Amazon Users

(Amazon 用户多域数据集)

This dataset focuses on Cross-Domain Recommendation scenarios, aggregating user interaction data across multiple domains with Amazon Books serving as the primary domain.

📋 Data Filtering Criteria

The dataset is filtered to ensure high-quality cross-domain user behavior. Users must meet the following criteria to be included:

  • Multi-Domain Activity: The user must be active in at least two domains (one of which must be Amazon Books).
  • Interaction Thresholds:
    • Primary Domain (Books): $\ge$ 5 interactions.
    • Auxiliary Domain(s): $\ge$ 3 interactions.

📂 File Descriptions

File Name Description
train/valid/test.csv Sequential User Interactions. The dataset is split using the leave-one-out strategy.
meta_item.csv Item Metadata. Contains the title and category for all items.
item_emb_qwen3_4B.npy Item Embeddings. Dense vector representations for all items, encoded using the Qwen/Qwen3-4B model.
Downloads last month
83