Dataset Viewer
Auto-converted to Parquet Duplicate
patient_id
int64
hour_from_admission
int64
heart_rate
float64
respiratory_rate
float64
spo2_pct
float64
temperature_c
float64
systolic_bp
float64
diastolic_bp
float64
oxygen_device
string
oxygen_flow
float64
mobility_score
int64
nurse_alert
int64
wbc_count
float64
lactate
float64
creatinine
float64
crp_level
float64
hemoglobin
float64
sepsis_risk_score
float64
age
int64
gender
string
comorbidity_index
int64
admission_type
string
baseline_risk_score
float64
los_hours
int64
deterioration_event
int64
deterioration_within_12h_from_admission
int64
deterioration_hour
int64
deterioration_next_12h
int64
1
0
68.58
14.47
96.52
37.18
108.94
78.43
none
0
2
0
5.68
1.28
1.27
10.66
13.55
0.2621
24
M
2
Elective
0.2173
17
0
0
-1
0
1
1
67.03
13.87
94.94
37.25
111.73
79.14
none
0
3
0
5.46
1.18
1.22
11.94
13.65
0.3353
24
M
2
Elective
0.2173
17
0
0
-1
0
1
2
69.05
14.63
94.45
37.29
111.48
78.86
none
0
2
0
5.55
1.21
1.25
10.24
13.69
0.1678
24
M
2
Elective
0.2173
17
0
0
-1
0
1
3
69.07
14.42
95.16
37.27
110.68
76.79
none
0
2
0
5.5
1.13
1.24
10.72
13.61
0.1961
24
M
2
Elective
0.2173
17
0
0
-1
0
1
4
73.35
15.62
95.83
37.21
110.38
75.47
none
0
3
0
5.96
1.2
1.21
11.46
13.49
0.3
24
M
2
Elective
0.2173
17
0
0
-1
0
1
5
73.39
15.44
94.21
37.28
109.26
75.58
none
0
2
0
6.53
1.1
1.21
12.45
13.58
0.3197
24
M
2
Elective
0.2173
17
0
0
-1
0
1
6
74.22
15.37
94.37
37.24
108.75
74.17
none
0
3
0
6.42
1.19
1.22
13.07
13.45
0.3819
24
M
2
Elective
0.2173
17
0
0
-1
0
1
7
73.4
15.12
94.83
37.21
108.9
71.97
none
0
3
0
6.34
1.3
1.23
14.87
13.53
0.5769
24
M
2
Elective
0.2173
17
0
0
-1
0
1
8
73.35
14.06
94.53
37.23
106.08
71.13
none
0
1
1
6.26
1.31
1.28
16.24
13.44
0.8892
24
M
2
Elective
0.2173
17
0
0
-1
0
1
9
71.29
12.98
94.79
37.1
107.75
72.03
none
0
2
0
6.14
1.38
1.25
14.56
13.48
0.3208
24
M
2
Elective
0.2173
17
0
0
-1
0
1
10
73.85
13.32
94.61
37.13
106.28
73.31
none
0
3
0
6.38
1.54
1.23
12.7
13.52
0.3322
24
M
2
Elective
0.2173
17
0
0
-1
0
1
11
73.96
14.03
94.36
37.14
106.19
73.2
none
0
2
0
6.84
1.43
1.23
12.81
13.58
0.2139
24
M
2
Elective
0.2173
17
0
0
-1
0
1
12
76.29
12.85
93.55
37.18
105.62
72.87
none
0
3
0
6.77
1.51
1.21
14
13.48
0.4385
24
M
2
Elective
0.2173
17
0
0
-1
0
1
13
75.7
14.13
94.01
37.17
105.63
73.19
none
0
3
0
6.67
1.56
1.23
11.77
13.45
0.3111
24
M
2
Elective
0.2173
17
0
0
-1
0
1
14
74.26
15.2
94.02
37.25
108.07
72.03
none
0
2
0
6.55
1.52
1.24
13.22
13.46
0.293
24
M
2
Elective
0.2173
17
0
0
-1
0
1
15
74.18
15.15
94.35
37.32
108.59
71.49
none
0
3
0
6.92
1.56
1.24
15.28
13.48
0.7849
24
M
2
Elective
0.2173
17
0
0
-1
0
1
16
75.06
14.86
94.18
37.35
107.12
70.86
none
0
3
0
6.92
1.66
1.24
15.41
13.4
0.6947
24
M
2
Elective
0.2173
17
0
0
-1
0
2
0
81.4
21.2
95.66
36.98
105.55
66.57
none
0
4
0
7.03
1.53
1.05
24.94
12.34
0.421
74
F
3
Transfer
0.5558
33
1
0
16
0
2
1
82.88
20.95
95.83
36.96
104.72
65.91
none
0
3
0
7.46
1.5
1.09
24.12
12.3
0.4801
74
F
3
Transfer
0.5558
33
1
0
16
0
2
2
81.81
20.34
96.8
36.96
104.57
66.85
none
0
2
0
7.25
1.59
1.09
21.41
12.25
0.2497
74
F
3
Transfer
0.5558
33
1
0
16
0
2
3
82.44
20.39
97.38
37.02
104.63
67.38
none
0
3
0
6.91
1.65
1.1
23.41
12.23
0.3737
74
F
3
Transfer
0.5558
33
1
0
16
0
2
4
79.52
20.93
97.12
37.07
105.49
68.71
none
0
3
0
7.19
1.74
1.14
25.17
12.17
0.2644
74
F
3
Transfer
0.5558
33
1
0
16
1
2
5
79.58
20.75
97.7
37.07
104.78
70.11
none
0
2
0
7.18
1.73
1.13
25.93
12.14
0.389
74
F
3
Transfer
0.5558
33
1
0
16
1
2
6
77.74
20.96
97.36
37.05
103.21
70.26
none
0
3
0
6.89
1.78
1.12
27.64
12.17
0.4677
74
F
3
Transfer
0.5558
33
1
0
16
1
2
7
75.32
20.54
97.04
37.09
102.15
69.54
none
0
3
0
6.75
1.82
1.14
25.61
12.12
0.1783
74
F
3
Transfer
0.5558
33
1
0
16
1
2
8
75.95
21.9
96.08
36.99
100
67.07
none
0
3
0
6.65
1.9
1.16
28.22
12.14
0.3958
74
F
3
Transfer
0.5558
33
1
0
16
1
2
9
70
22.35
96.04
37.08
100.84
67.22
none
0
2
0
6.66
1.88
1.17
30.9
12.16
0.6283
74
F
3
Transfer
0.5558
33
1
0
16
1
2
10
72.7
22.68
96.09
37.11
99.57
66.67
none
0
1
0
6.55
1.93
1.22
33.65
12.19
0.6414
74
F
3
Transfer
0.5558
33
1
0
16
1
2
11
73.29
23.46
96.04
37.17
95.51
65.43
none
0
1
0
6.69
2.05
1.31
33.14
12.1
0.4245
74
F
3
Transfer
0.5558
33
1
0
16
1
2
12
76.24
23.88
95.21
37.18
92.91
66.04
none
0
3
0
7.26
2.04
1.36
33.48
12.07
0.4931
74
F
3
Transfer
0.5558
33
1
0
16
1
2
13
76.56
24.38
94.27
37.19
88.73
62.84
none
0
3
1
7.29
2.14
1.36
34.89
11.98
0.5159
74
F
3
Transfer
0.5558
33
1
0
16
1
2
14
76.13
25.42
94.35
37.17
85.62
60.53
none
0
2
0
7.47
2.35
1.46
39.64
11.95
0.5784
74
F
3
Transfer
0.5558
33
1
0
16
1
2
15
77.92
26.23
93.41
37.2
83.63
58.35
none
0
1
1
8.08
2.68
1.53
43.83
11.95
0.614
74
F
3
Transfer
0.5558
33
1
0
16
1
2
16
81.06
27.33
93.02
37.24
79.81
58.55
none
0
2
1
8.34
2.86
1.59
44.38
11.85
0.7563
74
F
3
Transfer
0.5558
33
1
0
16
0
2
17
85.18
26.54
92.79
37.27
80.69
56.77
none
0
1
1
8.8
3.14
1.66
45.63
11.57
0.9516
74
F
3
Transfer
0.5558
33
1
0
16
0
2
18
84.49
25.07
91.92
37.26
79.64
55.47
none
0
0
0
9.35
3.39
1.74
48.71
11.4
0.5909
74
F
3
Transfer
0.5558
33
1
0
16
0
2
19
85.56
25.91
90.7
37.38
76.72
55.08
nasal
0.79
1
1
10.1
3.59
1.85
52.35
11.21
0.6224
74
F
3
Transfer
0.5558
33
1
0
16
0
2
20
87.3
27.95
90.67
37.4
77.3
53.13
mask
10.3
0
1
10.45
3.91
1.99
57.52
11.16
0.8529
74
F
3
Transfer
0.5558
33
1
0
16
0
2
21
90.18
28.21
89
37.47
76
51.87
hfnc
35.56
2
1
11.32
4.15
2.09
60.7
11.06
0.8987
74
F
3
Transfer
0.5558
33
1
0
16
0
2
22
90.65
27.99
88.12
37.48
74.32
50.22
niv
51.21
0
1
12.4
4.55
2.17
65.76
11.01
0.8117
74
F
3
Transfer
0.5558
33
1
0
16
0
2
23
92.26
30.35
86.77
37.69
72.05
47.84
niv
48.11
1
1
12.63
5
2.28
73.15
11.08
0.9535
74
F
3
Transfer
0.5558
33
1
0
16
0
2
24
98.36
31.75
86.15
37.73
70
47.01
niv
51.98
1
1
13.51
5.3
2.39
74.52
10.95
0.8745
74
F
3
Transfer
0.5558
33
1
0
16
0
2
25
102.04
32.27
85.42
37.73
70
46.89
niv
52.12
0
1
13.9
5.54
2.48
84
10.78
0.9028
74
F
3
Transfer
0.5558
33
1
0
16
0
2
26
105.68
33.51
83.92
37.81
70
44.26
niv
49.23
0
1
14.42
5.89
2.62
89.93
10.66
0.9072
74
F
3
Transfer
0.5558
33
1
0
16
0
2
27
113.43
34.11
83.37
37.93
70
41.85
niv
50.52
0
1
15.11
6.21
2.8
96.65
10.52
0.9927
74
F
3
Transfer
0.5558
33
1
0
16
0
2
28
115.24
36.01
81.99
38.05
70
40.98
niv
50.88
0
1
15.73
6.65
2.93
96.12
10.34
0.9836
74
F
3
Transfer
0.5558
33
1
0
16
0
2
29
120.75
37.1
80.85
38.08
70
40
niv
48.76
1
1
16.53
7.04
3.05
103
10.24
0.9946
74
F
3
Transfer
0.5558
33
1
0
16
0
2
30
124.89
37.51
80
38.1
70
40
niv
49.33
1
1
17.13
7.35
3.17
109.08
10.03
0.9935
74
F
3
Transfer
0.5558
33
1
0
16
0
2
31
128.22
39.26
78.7
38.07
70
40
niv
50.42
0
1
17.82
7.61
3.27
113.58
9.87
0.9892
74
F
3
Transfer
0.5558
33
1
0
16
0
2
32
134.55
39.68
77.58
38.11
70
40
niv
50.85
0
1
18.45
7.99
3.39
122.38
9.69
0.9972
74
F
3
Transfer
0.5558
33
1
0
16
0
3
0
84.7
22.87
93.48
36.89
127.65
81.14
none
0
3
0
11.22
2.01
0.93
23.35
13.31
0.532
65
F
7
ED
0.6325
55
0
0
-1
0
3
1
85.35
23.88
93.32
36.84
128.96
81.47
none
0
2
0
11.42
1.96
0.94
20.16
13.27
0.4298
65
F
7
ED
0.6325
55
0
0
-1
0
3
2
84.21
24.36
93.38
36.8
130.38
83.19
none
0
3
0
11.64
1.78
0.95
19.87
13.11
0.3127
65
F
7
ED
0.6325
55
0
0
-1
0
3
3
82.91
25.23
92.77
36.76
129.84
81.52
none
0
1
0
11.42
1.86
0.92
21.44
13.16
0.5109
65
F
7
ED
0.6325
55
0
0
-1
0
3
4
83.4
25.92
92.69
36.73
128.67
81
none
0
2
1
11.58
1.89
0.92
22.7
13.16
0.3244
65
F
7
ED
0.6325
55
0
0
-1
0
3
5
83.17
25.1
91.86
36.67
125.6
81.67
none
0
3
0
11.68
1.83
0.88
25.03
13.2
0.4394
65
F
7
ED
0.6325
55
0
0
-1
0
3
6
80.14
23.84
92.9
36.63
125.71
82.18
nasal
0
2
0
11.67
1.82
0.87
25.99
13.11
0.4707
65
F
7
ED
0.6325
55
0
0
-1
0
3
7
79.59
24.4
93.09
36.64
124.1
82.26
nasal
3.3
4
0
11.74
1.99
0.86
27.45
13.1
0.4556
65
F
7
ED
0.6325
55
0
0
-1
0
3
8
78.22
24.77
93.23
36.75
125.36
81.23
nasal
1.62
3
0
12.06
2.05
0.89
28.34
13.19
0.6663
65
F
7
ED
0.6325
55
0
0
-1
0
3
9
78.91
24.84
93.08
36.74
125.36
79.28
nasal
2.56
4
0
12.31
2.08
0.87
29.53
13.14
0.5185
65
F
7
ED
0.6325
55
0
0
-1
0
3
10
77.36
24.56
93.5
36.76
126.99
79.71
nasal
0.53
3
0
12.5
2.24
0.83
34.34
13.22
0.9182
65
F
7
ED
0.6325
55
0
0
-1
0
3
11
79.12
24.93
93.68
36.8
126.81
79.14
nasal
1.95
2
0
12.62
2.2
0.83
31.46
13.22
0.4729
65
F
7
ED
0.6325
55
0
0
-1
0
3
12
80.92
24.45
93.21
36.84
128.36
79.61
nasal
3.88
3
0
12.5
2.15
0.82
31.34
13.09
0.4534
65
F
7
ED
0.6325
55
0
0
-1
0
3
13
82.95
24.2
93.06
36.89
129.65
80.69
nasal
1.76
2
0
12.5
2.16
0.81
31.23
13.03
0.6117
65
F
7
ED
0.6325
55
0
0
-1
0
3
14
80.13
24.47
92.6
36.85
128.35
81.21
nasal
0.12
4
0
11.93
2.18
0.81
29.29
13.05
0.4025
65
F
7
ED
0.6325
55
0
0
-1
0
3
15
80.63
23.71
92.47
36.84
128.77
81.65
nasal
2.62
4
0
11.99
2.2
0.81
29.98
12.99
0.4344
65
F
7
ED
0.6325
55
0
0
-1
0
3
16
85.45
23.77
93.04
36.84
129.05
81.52
nasal
2.63
1
0
11.87
2.28
0.81
31.64
13.07
0.8207
65
F
7
ED
0.6325
55
0
0
-1
0
3
17
85.4
23.78
93.7
36.89
128.8
84.2
nasal
3.11
2
0
11.78
2.26
0.78
28.52
12.97
0.7678
65
F
7
ED
0.6325
55
0
0
-1
0
3
18
87.01
22.16
94.58
36.95
130.18
85.52
nasal
3.06
2
0
11.27
2.24
0.81
28.51
13.03
0.8098
65
F
7
ED
0.6325
55
0
0
-1
0
3
19
83.67
22.55
94.96
36.95
132.15
85.83
nasal
1.39
3
0
11.31
2.39
0.78
31.29
13.14
0.7576
65
F
7
ED
0.6325
55
0
0
-1
0
3
20
82.54
22.65
94.52
36.94
130.28
86.54
nasal
1.86
3
0
11.71
2.56
0.75
29.57
13.13
0.777
65
F
7
ED
0.6325
55
0
0
-1
0
3
21
79.24
22.79
93.95
36.92
129.77
87.48
nasal
2.42
2
1
11.74
2.54
0.82
28.01
13.17
0.7668
65
F
7
ED
0.6325
55
0
0
-1
0
3
22
80.7
23.72
93.98
36.86
129.98
89.27
nasal
4.25
2
0
11.51
2.52
0.82
30.41
13.13
0.7413
65
F
7
ED
0.6325
55
0
0
-1
0
3
23
80.73
24.59
94.21
36.92
127.27
89.77
nasal
3.84
3
1
10.83
2.63
0.86
29.97
12.96
0.6406
65
F
7
ED
0.6325
55
0
0
-1
0
3
24
80.36
26.3
93.25
36.89
125.26
90.7
nasal
3.06
2
0
10.55
2.72
0.89
30.55
12.96
0.5055
65
F
7
ED
0.6325
55
0
0
-1
0
3
25
83.56
26.13
93.96
36.9
126.44
89.36
nasal
1.62
2
0
10.41
2.68
0.93
30.06
13.01
0.6585
65
F
7
ED
0.6325
55
0
0
-1
0
3
26
83.09
25.99
93.57
36.91
129.96
91.12
nasal
2.23
2
0
10.43
2.69
0.95
30.67
13.07
0.7081
65
F
7
ED
0.6325
55
0
0
-1
0
3
27
78.66
26.24
92.56
36.93
128.37
92.57
nasal
0.48
2
1
10.46
2.69
0.97
29.04
13.16
0.7616
65
F
7
ED
0.6325
55
0
0
-1
0
3
28
76.49
25.88
92.27
36.92
128.04
93.11
nasal
1.14
3
1
10.47
2.72
0.97
28.65
13.22
0.2208
65
F
7
ED
0.6325
55
0
0
-1
0
3
29
77.59
26.46
91.57
36.93
125.86
93.64
mask
9.45
3
0
10.35
2.66
0.92
28.46
13.13
0.3946
65
F
7
ED
0.6325
55
0
0
-1
0
3
30
77.31
27
91.51
36.95
125.12
93.21
mask
5.97
2
0
10.19
2.71
0.94
27.35
13.19
0.4059
65
F
7
ED
0.6325
55
0
0
-1
0
3
31
76
27.5
91.47
36.92
124.83
90.95
hfnc
37.19
4
1
10.33
2.53
0.92
27.19
13.22
0.6654
65
F
7
ED
0.6325
55
0
0
-1
0
3
32
75.8
27.37
91.16
36.94
126.99
88.21
hfnc
35.3
2
1
10.29
2.65
0.93
28.02
13.09
0.7477
65
F
7
ED
0.6325
55
0
0
-1
0
3
33
73.73
26.43
91.56
36.99
125.72
86.93
hfnc
35.88
3
1
10.07
2.66
0.9
30.59
13.06
0.7034
65
F
7
ED
0.6325
55
0
0
-1
0
3
34
72.37
26.31
91.3
37.03
124.71
87.72
hfnc
34.3
3
0
10.19
2.65
0.92
27.51
13.05
0.5113
65
F
7
ED
0.6325
55
0
0
-1
0
3
35
72.64
26.45
91.59
36.97
125.58
86.05
hfnc
35.36
2
0
9.49
2.81
0.89
26.62
12.9
0.5746
65
F
7
ED
0.6325
55
0
0
-1
0
3
36
73.38
26.64
91.65
37.01
125.39
87.59
hfnc
34.36
3
0
9.42
2.87
0.91
23.34
12.94
0.5429
65
F
7
ED
0.6325
55
0
0
-1
0
3
37
73.43
26.47
92.17
36.98
127.41
88.01
hfnc
33.05
3
0
9.41
2.97
0.97
22.92
12.88
0.7266
65
F
7
ED
0.6325
55
0
0
-1
0
3
38
71.72
28.97
91.48
37.01
126.06
89.97
hfnc
34.17
1
0
9.28
2.95
0.92
27.08
12.83
0.7354
65
F
7
ED
0.6325
55
0
0
-1
0
3
39
71.18
29.23
92.55
37.04
127.52
89.63
hfnc
34.79
2
1
8.95
2.92
0.9
26.98
12.79
0.3708
65
F
7
ED
0.6325
55
0
0
-1
0
3
40
70.22
28.54
91.95
37.05
126.72
90.46
hfnc
35.06
2
1
8.86
2.93
0.9
27.75
12.72
0.7824
65
F
7
ED
0.6325
55
0
0
-1
0
3
41
72.01
28.98
92.48
37.03
128.27
89.7
hfnc
33.72
2
0
8.74
2.94
0.92
26.66
12.78
0.69
65
F
7
ED
0.6325
55
0
0
-1
0
3
42
72.68
28.34
91.84
36.93
129.54
90.74
hfnc
33.97
3
0
8.24
2.95
0.91
29.09
12.76
0.7317
65
F
7
ED
0.6325
55
0
0
-1
0
3
43
70.14
29.25
91.35
36.81
129.55
91.29
hfnc
35.31
4
1
7.86
2.79
0.9
27.83
12.87
0.6211
65
F
7
ED
0.6325
55
0
0
-1
0
3
44
69.97
28
91.76
36.87
131.04
91.16
hfnc
36.2
3
1
7.49
2.78
0.88
29.68
12.84
0.5382
65
F
7
ED
0.6325
55
0
0
-1
0
3
45
67.77
28.85
92.5
36.8
130.16
90.15
hfnc
35.74
3
0
7.61
2.87
0.87
28.94
12.68
0.4637
65
F
7
ED
0.6325
55
0
0
-1
0
3
46
67.22
28.86
92.66
36.87
129.02
90
hfnc
35.69
3
0
7.41
2.71
0.89
32.43
12.74
0.646
65
F
7
ED
0.6325
55
0
0
-1
0
3
47
67.81
28.76
93.08
36.82
129.73
89.06
hfnc
34.8
3
1
7.54
2.9
0.91
34.78
12.81
0.2604
65
F
7
ED
0.6325
55
0
0
-1
0
3
48
67.24
28.69
92.46
36.77
132
85.12
hfnc
34.43
2
0
7.61
3
0.91
37.6
12.78
0.5086
65
F
7
ED
0.6325
55
0
0
-1
0
3
49
65.66
28.02
91.9
36.79
130.3
83.76
hfnc
35.68
3
1
7.34
3.01
0.93
39.1
12.8
0.7395
65
F
7
ED
0.6325
55
0
0
-1
0
End of preview. Expand in Data Studio

πŸ₯ Hospital Deterioration β€” Simulated Early Warning

Clinical Time-Series Benchmark for Early Warning Models

A fully simulated hospital cohort for building and testing early warning models and clinical deterioration risk scores.
Each admission includes up to 72 hours of hourly data: vitals, labs, patient context, and multiple deterioration outcomes β€” with a main label for β€œdeterioration in the next 12 hours”.

All records are fully simulated, internally consistent, and contain no missing values, making the dataset directly usable for machine learning and time-series modeling.


⚠️ Simulation & Privacy

  • No row corresponds to a real patient or a real hospital.
  • All values are generated through a simulation pipeline designed to create plausible clinical patterns, not to reproduce real EHR data.
  • The dataset is intended for research, education, and prototyping, not for real clinical decision-making.

πŸ“˜ Dataset Overview

Field Description
Files patients.csv, vitals_timeseries.csv, labs_timeseries.csv, hospital_deterioration_hourly_panel.csv, hospital_deterioration_ml_ready.csv
Patients 10,000 admissions (one row per patient in patients.csv)
Time span Up to 72 hours of follow-up per admission (hour_from_admission = 0–71)
Granularity Hourly time series per patient (vitals, labs, labels)
Main target deterioration_next_12h (binary label, 0/1)
Type Tabular / time-series (simulated)

🧠 Feature Groups

🧍 Patient-Level Features (patients.csv)

  • patient_id
  • age, gender
  • comorbidity_index
  • admission_type (ED / Elective / Transfer)
  • baseline_risk_score (latent baseline deterioration risk, 0–1)
  • los_hours (length of stay, 12–72 hours)
  • Deterioration summary outcomes:
    • deterioration_event
    • deterioration_within_12h_from_admission
    • deterioration_hour (or -1 if no event)

πŸ“‰ Hourly Vitals (vitals_timeseries.csv)

Per (patient_id, hour_from_admission):

  • heart_rate, respiratory_rate
  • spo2_pct, temperature_c
  • systolic_bp, diastolic_bp
  • oxygen_device, oxygen_flow
  • mobility_score
  • nurse_alert

Consistency rule:
When oxygen_device == "none", oxygen_flow is always 0.0.


πŸ§ͺ Hourly Labs (labs_timeseries.csv)

Per (patient_id, hour_from_admission):

  • wbc_count
  • lactate
  • creatinine
  • crp_level
  • hemoglobin
  • sepsis_risk_score (latent hourly sepsis risk, 0–1)

🧾 Joined Panel & ML-Ready View

  • hospital_deterioration_hourly_panel.csv

    • One row per (patient_id, hour_from_admission)
    • Joins vitals + labs + patient-level features + all deterioration labels
    • Useful for custom label definitions, multi-task learning, and advanced feature engineering.
  • hospital_deterioration_ml_ready.csv

    • Same hourly granularity
    • Features only (vitals, labs, static features)
    • Single target: deterioration_next_12h (0/1)
    • Recommended entry point for most ML tasks.

🎯 Target Definition β€” deterioration_next_12h

The main label is:

  • deterioration_next_12h = 1
    if a deterioration event happens after the current hour and within the next 12 hours.

  • deterioration_next_12h = 0
    if:

    • there is no event in the stay, or
    • the event is happening now, or
    • it happens more than 12 hours later.

This framing mirrors real-world early warning systems:
the model should trigger an alert before the deterioration happens, not at the same time.


πŸš€ Example Usage

from datasets import load_dataset

dataset = load_dataset("TarekMasryo/hospital-deterioration-early-warning")

# Load ML-ready split as a pandas DataFrame
df = dataset["train"].to_pandas()

X = df.drop(columns=["deterioration_next_12h"])
y = df["deterioration_next_12h"]

print(X.shape, y.mean())

To reconstruct a full hourly panel from separate files (if you export them):

import pandas as pd

patients = pd.read_csv("patients.csv")
vitals = pd.read_csv("vitals_timeseries.csv")
labs = pd.read_csv("labs_timeseries.csv")

panel = (
    vitals
    .merge(labs, on=["patient_id", "hour_from_admission"], how="inner")
    .merge(patients, on="patient_id", how="left")
)

print(panel.shape)

πŸ”¬ Research & Applications

  • Early warning models for clinical deterioration
  • Sepsis and high-risk trajectory modeling
  • Sequence models over hourly vitals + labs
  • Risk score calibration and interpretability (e.g., SHAP, partial dependence)
  • Threshold tuning and policy design (balancing recall vs false alarms)
  • Teaching end-to-end clinical ML pipelines without real-patient data

🧩 Reproducibility

  • No missing values
  • Clean numeric + categorical schema
  • Hourly-aligned time indexing (hour_from_admission)
  • Suitable for:
    • Classic ML (tree-based models, logistic regression)
    • Deep learning (RNNs, Temporal CNNs, Transformers)
    • Survival-like / time-to-event framing with custom labels

🧭 Ethical Considerations

  • This dataset is simulated and must not be used for clinical decisions.
  • Patterns are plausible, not calibrated to any specific hospital, region, or population.
  • Any model trained on this data requires:
    • Validation on real EHR data
    • Clinical oversight
    • Regulatory and ethical review before deployment.

Treat this dataset as a simulation benchmark and a teaching tool, not as a substitute for real-world evidence.


πŸ“š Citation

If you use this dataset, please cite:

Tarek Masryo. β€œHospital Deterioration β€” Simulated Early Warning.”
Simulation benchmark dataset for early clinical deterioration modeling and time-series ML.

You may also cite the Hugging Face dataset URL and any associated GitHub repository or notebooks.


πŸ“œ License

CC BY 4.0 (Attribution Required)

Free to use, share, and modify with proper attribution.
For full license terms: https://creativecommons.org/licenses/by/4.0/

Downloads last month
15