IPDA Debate Canonical Model v3
Collection
Essential models and datasets used to build the IPDA debate canonical model. Includes ORPO, GRPO iterations, SFT distillation, and golden samples.
•
15 items
•
Updated
LoRA adapter for IPDA (International Public Debate Association) style debate generation.
This is the final iteration (12) of iterative ORPO training for debate. The model generates complete IPDA debates including:
Base Model: Qwen/Qwen3-30B-A3B
| Iteration | Mean Score | Best Score | Zero Rate | Pairs |
|---|---|---|---|---|
| 1 | 0.198 | 0.85 | 18.2% | 644 |
| 6 | 0.295 | 0.91 | 14.2% | 64 |
| 8 | 0.303 | 0.93 | 13.8% | 66 |
| 12 | 0.285 | 0.89 | 13.5% | 228 |
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-30B-A3B")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-30B-A3B")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "debaterhub/debate-orpo-iter12")
This is Phase 1 of the debate AI training pipeline:
Apache 2.0