Quantifying the Carbon Emissions of Machine Learning
Paper
•
1910.09700
•
Published
•
23
This model is finetuned on conversational data for chat in Japanese.
The model can be directly used for casual conversation in Japanese.
Below is a minimal example of how to load and use this model for inference in Python.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "flypg/DeepSeek-R1-Distill-Qwen-14B-Japanese-chat"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
model.eval()
prompt = "your prompt"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(response)
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
If you use this model in your research or work, please cite it using the following BibTeX entry:
@misc{DeepSeek R1-Qwen Model for Chat in Japenese,
title={DeepSeek-R1-Distill-Qwen-14B-Japanese-chat: A Fine-Tuned Qwen-based Model for Chat in Japenese},
author={flypg},
year={2025},
howpublished={\url{https://huggingface.co/flypg/DeepSeek-R1-Distill-Qwen-14B-Japanese-chat}},
note={Accessed: YYYY-MM-DD}
}
## Contact
[kenkun091](https://github.com/kenkun091)
Please feel free to open an issue.
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B