Update README.md
#1
by
moshe-raboh
- opened
README.md
CHANGED
|
@@ -1,8 +1,92 @@
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
+
- protein
|
| 4 |
+
- ibm
|
| 5 |
+
- mammal
|
| 6 |
+
- pytorch
|
| 7 |
+
- transformers
|
| 8 |
+
library_name: biomed
|
| 9 |
+
license: apache-2.0
|
| 10 |
---
|
| 11 |
|
| 12 |
+
Protein solubility is a critical factor in both pharmaceutical research and production processes, as it can significantly impact the quality and function of a protein.
|
| 13 |
+
This is an example for finetuning `ibm/biomed.omics.bl.sm-ted-400m` for protein solubility prediction (binary classification) based solely on the amino acid sequence.
|
| 14 |
+
|
| 15 |
+
The benchmark defined in: https://academic.oup.com/bioinformatics/article/34/15/2605/4938490
|
| 16 |
+
Data retrieved from: https://zenodo.org/records/1162886
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Model Summary
|
| 20 |
+
|
| 21 |
+
- **Developers:** IBM Research
|
| 22 |
+
- **GitHub Repository:** https://github.com/BiomedSciAI/biomed-multi-alignment
|
| 23 |
+
- **Paper:** TBD
|
| 24 |
+
- **Release Date**: Oct 28th, 2024
|
| 25 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
|
| 36 |
+
```python
|
| 37 |
+
import os
|
| 38 |
+
|
| 39 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 40 |
+
|
| 41 |
+
from mammal.examples.protein_solubility.task import ProteinSolubilityTask
|
| 42 |
+
from mammal.keys import CLS_PRED, SCORES
|
| 43 |
+
from mammal.model import Mammal
|
| 44 |
+
|
| 45 |
+
# Load Model
|
| 46 |
+
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
|
| 47 |
+
|
| 48 |
+
# Load Tokenizer
|
| 49 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
|
| 50 |
+
|
| 51 |
+
# convert to MAMMAL style
|
| 52 |
+
sample_dict = {"protein_seq": protein_seq}
|
| 53 |
+
sample_dict = ProteinSolubilityTask.data_preprocessing(
|
| 54 |
+
sample_dict=sample_dict,
|
| 55 |
+
protein_sequence_key="protein_seq",
|
| 56 |
+
tokenizer_op=tokenizer_op,
|
| 57 |
+
device=nn_model.device,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# running in generate mode
|
| 61 |
+
batch_dict = nn_model.generate(
|
| 62 |
+
[sample_dict],
|
| 63 |
+
output_scores=True,
|
| 64 |
+
return_dict_in_generate=True,
|
| 65 |
+
max_new_tokens=5,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Post-process the model's output
|
| 69 |
+
ans = ProteinSolubilityTask.process_model_output(
|
| 70 |
+
tokenizer_op=tokenizer_op,
|
| 71 |
+
decoder_output=batch_dict[CLS_PRED][0],
|
| 72 |
+
decoder_output_scores=batch_dict[SCORES][0],
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Print prediction
|
| 76 |
+
print(f"{ans=}")
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
For more advanced usage, see our detailed example at: on `https://github.com/BiomedSciAI/biomed-multi-alignment`
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
## Citation
|
| 83 |
+
|
| 84 |
+
If you found our work useful, please consider to give a star to the repo and cite our paper:
|
| 85 |
+
```
|
| 86 |
+
@article{TBD,
|
| 87 |
+
title={TBD},
|
| 88 |
+
author={IBM Research Team},
|
| 89 |
+
jounal={arXiv preprint arXiv:TBD},
|
| 90 |
+
year={2024}
|
| 91 |
+
}
|
| 92 |
+
```
|