FunctionGemma Tasky (ONNX)
This repository contains an ONNX export of functiongemma-tasky, a fine-tuned variant of google/functiongemma-270m-it trained for task/todo function-calling. It targets Transformers.js and includes both full precision and Q4 quantized weights.
Files
onnx/model.onnx: full-precision weights (fp32)onnx/model_q4.onnx: 4-bit quantized weights (q4)
Usage (Transformers.js)
import { pipeline } from '@huggingface/transformers';
// Q4 (smaller, faster)
const pipe = await pipeline('text-generation', 'REPLACE_WITH_HF_REPO', {
dtype: 'q4',
});
const out = await pipe('Add a task to call Alice tomorrow at 9am', {
max_new_tokens: 128,
});
console.log(out[0].generated_text);
To load full precision instead:
const pipe = await pipeline('text-generation', 'REPLACE_WITH_HF_REPO', {
dtype: 'fp32',
});
Transformers.js expects ONNX weights under an onnx/ subfolder, which this repo provides.
Training summary
- Base model:
google/functiongemma-270m-it - Fine-tuning data: synthetic task/todo function-calling prompts, mixed English/Italian, includes user-style typos
- Eval success rate: ~99.5% on a 1500/500 train/eval split
Notes
- Quantized models trade some accuracy for faster inference and smaller size.
- Outputs may not be strict JSON; validate and post-process if needed.
- Downloads last month
- 9
Model tree for independently-platform/functiongemma-tasky-ONNX
Base model
google/functiongemma-270m-it