|
|
--- |
|
|
library_name: lerobot |
|
|
tags: |
|
|
- model_hub_mixin |
|
|
- pytorch_model_hub_mixin |
|
|
- robotics |
|
|
- dot |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- lerobot/aloha_sim_transfer_cube_human |
|
|
pipeline_tag: robotics |
|
|
--- |
|
|
|
|
|
# Model Card for "Decoder Only Transformer (DOT) Policy" for ALOHA cube transfer problem |
|
|
|
|
|
Read more about the model and implementation details in the [DOT Policy repository](https://github.com/IliaLarchenko/dot_policy). |
|
|
|
|
|
This model is trained using the [LeRobot library](https://huggingface.co/lerobot) and achieves state-of-the-art results on behavior cloning on ALOHA bimanual insert dataset. It achieves 92.6% success rate vs. 83% for the previous state-of-the-art model (ACT). (Note: it looks like the LeRobot implementation is not deterministic of environment makes it easier than the original problem, I am comparing it with https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human). |
|
|
|
|
|
You can use this model by installing LeRobot from [this branch](https://github.com/IliaLarchenko/lerobot/tree/dot_new_config) |
|
|
|
|
|
To train the model: |
|
|
|
|
|
```bash |
|
|
python lerobot/scripts/train.py \ |
|
|
--policy.type=dot \ |
|
|
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \ |
|
|
--env.type=aloha \ |
|
|
--env.task=AlohaTransferCube-v0 \ |
|
|
--output_dir=outputs/train/pusht_aloha_transfer_cube \ |
|
|
--batch_size=24 \ |
|
|
--log_freq=1000 \ |
|
|
--eval_freq=5000 \ |
|
|
--save_freq=5000 \ |
|
|
--offline.steps=100000 \ |
|
|
--seed=100000 \ |
|
|
--wandb.enable=true \ |
|
|
--num_workers=24 \ |
|
|
--use_amp=true \ |
|
|
--device=cuda \ |
|
|
--policy.optimizer_lr=0.0001 \ |
|
|
--policy.optimizer_min_lr=0.0001 \ |
|
|
--policy.optimizer_lr_cycle_steps=100000 \ |
|
|
--policy.train_horizon=75 \ |
|
|
--policy.inference_horizon=50 \ |
|
|
--policy.lookback_obs_steps=20 \ |
|
|
--policy.lookback_aug=5 \ |
|
|
--policy.rescale_shape="[480,640]" \ |
|
|
--policy.alpha=0.98 \ |
|
|
--policy.train_alpha=0.99 \ |
|
|
--wandb.project=transfer_cube |
|
|
``` |
|
|
|
|
|
To evaluate the model: |
|
|
|
|
|
```bash |
|
|
python lerobot/scripts/eval.py \ |
|
|
--policy.path=jadechoghari/dot_transfer_cube \ |
|
|
--env.type=aloha \ |
|
|
--env.task=AlohaTransferCube-v0 \ |
|
|
--eval.n_episodes=1000 \ |
|
|
--eval.batch_size=100 \ |
|
|
--seed=1000000 |
|
|
``` |
|
|
|
|
|
Model size: |
|
|
- Total parameters: 14.1m |
|
|
- Trainable parameters: 2.9m |
|
|
|