SeamlessM4T-v2 T2TT Lite Model

Extracted from facebook/seamless-m4t-v2-large, containing only T2TT (Text-to-Text Translation) components.

Original Model: facebook/seamless-m4t-v2-large

Official Documentation: SeamlessM4T-v2 Documentation

Note: This package only reorganizes publicly available weights from Meta's original model for T2TT usage. No new training or fine-tuning is introduced. All rights of the model and weights belong to their original owner.

Supported Features

  • T2TT (Text-to-Text Translation): Multilingual text translation
  • 96 Languages: Supports text translation between 96 languages

Included Components

Model Weights

  • text_encoder: Text encoder
  • text_decoder: Text decoder
  • shared.weight: Shared word embeddings
  • lang_embed: Language embeddings

Model Size

  • Original Model: ~8.6 GB
  • Lite Model: ~5.1 GB
  • Removed Weights: 1219 (speech_encoder, t2u_model, vocoder)
  • Space Saved: ~3.5 GB

Usage Examples

1. Basic T2TT: Text-to-Text Translation

from transformers import SeamlessM4Tv2Model, AutoProcessor

# Load model
model = SeamlessM4Tv2Model.from_pretrained("jaman21/seamless-m4t-v2-t2tt")
processor = AutoProcessor.from_pretrained("jaman21/seamless-m4t-v2-t2tt")

# Translate text
text_inputs = processor(text="Hello, how are you?", src_lang="eng", return_tensors="pt")
output_tokens = model.generate(**text_inputs, tgt_lang="fra", generate_speech=False)
translated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
print(translated_text)  # "Bonjour, comment allez-vous?"

2. Advanced Generation Strategies

# Beam search for better quality (slower)
text_inputs = processor(text="The quick brown fox jumps", src_lang="eng", return_tensors="pt")
outputs = model.generate(
    **text_inputs,
    tgt_lang="jpn",
    generate_speech=False,
    num_beams=5,              # Use beam search
    max_new_tokens=256,
    early_stopping=True
)

# Sampling for more diverse output
outputs = model.generate(
    **text_inputs,
    tgt_lang="kor",
    generate_speech=False,
    do_sample=True,           # Enable sampling
    top_k=50,
    top_p=0.95,
    temperature=0.8           # 0.0-1.0: lower is more deterministic, higher is more random (affects translation quality)
)

3. Batch Processing Multiple Texts

# Process multiple texts at once
texts = [
    "Hello, how are you?",
    "What is your name?",
    "Nice to meet you!"
]

text_inputs = processor(text=texts, src_lang="eng", return_tensors="pt", padding=True)
output_tokens = model.generate(**text_inputs, tgt_lang="ita", generate_speech=False)

# Decode all outputs
translations = processor.batch_decode(output_tokens, skip_special_tokens=True)
for orig, trans in zip(texts, translations):
    print(f"{orig} -> {trans}")

4. Control Generation Length and Quality

text_inputs = processor(text="Translate this sentence", src_lang="eng", return_tensors="pt")

# Higher quality but more computationally expensive
high_quality_output = model.generate(
    **text_inputs,
    tgt_lang="rus",
    generate_speech=False,
    num_beams=5,              # Beam search
    max_new_tokens=512,       # Allow longer output
    length_penalty=1.0,       # No length penalty
    early_stopping=True,
    use_cache=True            # Accelerate generation
)

# Faster generation speed, acceptable quality
fast_output = model.generate(
    **text_inputs,
    tgt_lang="rus",
    generate_speech=False,
    num_beams=1,              # Greedy decoding for better translation quality (slower)
    max_new_tokens=256,
    use_cache=True
)

5. GPU/CPU Usage

import torch

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)

# Process inputs on the same device
text_inputs = processor(text="Hello", src_lang="eng", return_tensors="pt")
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}

# Generate
with torch.inference_mode():  # More efficient than torch.no_grad()
    outputs = model.generate(**text_inputs, tgt_lang="cmn", generate_speech=False)

License

Same as the original model: CC-BY-NC-4.0

For commercial use, please refer to Meta's licensing terms.

References

Downloads last month
14
Safetensors
Model size
1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support