File size: 4,934 Bytes
fb21f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---

license: cc-by-nc-4.0
---


# SeamlessM4T-v2 T2TT Lite Model

Extracted from `facebook/seamless-m4t-v2-large`, containing only T2TT (Text-to-Text Translation) components.

> Original Model: [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large)
> 

> Official Documentation: [SeamlessM4T-v2 Documentation](https://huggingface.co/docs/transformers/en/model_doc/seamless_m4t_v2)

Note: This package only reorganizes publicly available weights from Meta's original model for T2TT usage. No new training or fine-tuning is introduced. All rights of the model and weights belong to their original owner.

## Supported Features

- **T2TT (Text-to-Text Translation)**: Multilingual text translation
- **96 Languages**: Supports text translation between 96 languages

## Included Components

### Model Weights
- `text_encoder`: Text encoder
- `text_decoder`: Text decoder
- `shared.weight`: Shared word embeddings
- `lang_embed`: Language embeddings

## Model Size

- Original Model: ~8.6 GB
- Lite Model: ~5.1 GB
- Removed Weights: 1219 (speech_encoder, t2u_model, vocoder)
- Space Saved: ~3.5 GB

## Usage Examples

### 1. Basic T2TT: Text-to-Text Translation

```python

from transformers import SeamlessM4Tv2Model, AutoProcessor



# Load model

model = SeamlessM4Tv2Model.from_pretrained("jaman21/seamless-m4t-v2-t2tt")

processor = AutoProcessor.from_pretrained("jaman21/seamless-m4t-v2-t2tt")



# Translate text

text_inputs = processor(text="Hello, how are you?", src_lang="eng", return_tensors="pt")

output_tokens = model.generate(**text_inputs, tgt_lang="fra", generate_speech=False)

translated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)

print(translated_text)  # "Bonjour, comment allez-vous?"

```

### 2. Advanced Generation Strategies

```python

# Beam search for better quality (slower)

text_inputs = processor(text="The quick brown fox jumps", src_lang="eng", return_tensors="pt")

outputs = model.generate(

    **text_inputs,

    tgt_lang="jpn",

    generate_speech=False,

    num_beams=5,              # Use beam search

    max_new_tokens=256,

    early_stopping=True

)



# Sampling for more diverse output

outputs = model.generate(

    **text_inputs,

    tgt_lang="kor",

    generate_speech=False,

    do_sample=True,           # Enable sampling

    top_k=50,

    top_p=0.95,

    temperature=0.8           # 0.0-1.0: lower is more deterministic, higher is more random (affects translation quality)

)

```

### 3. Batch Processing Multiple Texts

```python

# Process multiple texts at once

texts = [

    "Hello, how are you?",

    "What is your name?",

    "Nice to meet you!"

]



text_inputs = processor(text=texts, src_lang="eng", return_tensors="pt", padding=True)

output_tokens = model.generate(**text_inputs, tgt_lang="ita", generate_speech=False)



# Decode all outputs

translations = processor.batch_decode(output_tokens, skip_special_tokens=True)

for orig, trans in zip(texts, translations):

    print(f"{orig} -> {trans}")

```

### 4. Control Generation Length and Quality

```python

text_inputs = processor(text="Translate this sentence", src_lang="eng", return_tensors="pt")



# Higher quality but more computationally expensive

high_quality_output = model.generate(

    **text_inputs,

    tgt_lang="rus",

    generate_speech=False,

    num_beams=5,              # Beam search

    max_new_tokens=512,       # Allow longer output

    length_penalty=1.0,       # No length penalty

    early_stopping=True,

    use_cache=True            # Accelerate generation

)



# Faster generation speed, acceptable quality

fast_output = model.generate(

    **text_inputs,

    tgt_lang="rus",

    generate_speech=False,

    num_beams=1,              # Greedy decoding for better translation quality (slower)

    max_new_tokens=256,

    use_cache=True

)

```

### 5. GPU/CPU Usage

```python

import torch



# Move model to GPU if available

device = "cuda" if torch.cuda.is_available() else "cpu"

model = model.to(device)



# Process inputs on the same device

text_inputs = processor(text="Hello", src_lang="eng", return_tensors="pt")

text_inputs = {k: v.to(device) for k, v in text_inputs.items()}



# Generate

with torch.inference_mode():  # More efficient than torch.no_grad()

    outputs = model.generate(**text_inputs, tgt_lang="cmn", generate_speech=False)

```

## License

Same as the original model: **CC-BY-NC-4.0**

For commercial use, please refer to Meta's licensing terms.

## References

- [SeamlessM4T-v2 Paper](https://arxiv.org/abs/2312.05187)
- [Official Model Card](https://huggingface.co/facebook/seamless-m4t-v2-large)
- [Transformers Documentation](https://huggingface.co/docs/transformers/en/model_doc/seamless_m4t_v2)
- [GitHub Repository](https://github.com/facebookresearch/seamless_communication)