|
|
|
|
|
|
|
|
from mpi4py import MPI |
|
|
from baselines.common import set_global_seeds |
|
|
from baselines import logger |
|
|
from baselines.common.cmd_util import make_robotics_env, robotics_arg_parser |
|
|
import mujoco_py |
|
|
|
|
|
|
|
|
def train(env_id, num_timesteps, seed): |
|
|
from baselines.ppo1 import mlp_policy, pposgd_simple |
|
|
import baselines.common.tf_util as U |
|
|
rank = MPI.COMM_WORLD.Get_rank() |
|
|
sess = U.single_threaded_session() |
|
|
sess.__enter__() |
|
|
mujoco_py.ignore_mujoco_warnings().__enter__() |
|
|
workerseed = seed + 10000 * rank |
|
|
set_global_seeds(workerseed) |
|
|
env = make_robotics_env(env_id, workerseed, rank=rank) |
|
|
def policy_fn(name, ob_space, ac_space): |
|
|
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, |
|
|
hid_size=256, num_hid_layers=3) |
|
|
|
|
|
pposgd_simple.learn(env, policy_fn, |
|
|
max_timesteps=num_timesteps, |
|
|
timesteps_per_actorbatch=2048, |
|
|
clip_param=0.2, entcoeff=0.0, |
|
|
optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256, |
|
|
gamma=0.99, lam=0.95, schedule='linear', |
|
|
) |
|
|
env.close() |
|
|
|
|
|
|
|
|
def main(): |
|
|
args = robotics_arg_parser().parse_args() |
|
|
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
main() |
|
|
|