|
|
import numpy as np |
|
|
import matplotlib |
|
|
matplotlib.use('TkAgg') |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
plt.rcParams['svg.fonttype'] = 'none' |
|
|
|
|
|
from baselines.common import plot_util |
|
|
|
|
|
X_TIMESTEPS = 'timesteps' |
|
|
X_EPISODES = 'episodes' |
|
|
X_WALLTIME = 'walltime_hrs' |
|
|
Y_REWARD = 'reward' |
|
|
Y_TIMESTEPS = 'timesteps' |
|
|
POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME] |
|
|
EPISODES_WINDOW = 100 |
|
|
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', |
|
|
'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', |
|
|
'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'] |
|
|
|
|
|
def rolling_window(a, window): |
|
|
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) |
|
|
strides = a.strides + (a.strides[-1],) |
|
|
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) |
|
|
|
|
|
def window_func(x, y, window, func): |
|
|
yw = rolling_window(y, window) |
|
|
yw_func = func(yw, axis=-1) |
|
|
return x[window-1:], yw_func |
|
|
|
|
|
def ts2xy(ts, xaxis, yaxis): |
|
|
if xaxis == X_TIMESTEPS: |
|
|
x = np.cumsum(ts.l.values) |
|
|
elif xaxis == X_EPISODES: |
|
|
x = np.arange(len(ts)) |
|
|
elif xaxis == X_WALLTIME: |
|
|
x = ts.t.values / 3600. |
|
|
else: |
|
|
raise NotImplementedError |
|
|
if yaxis == Y_REWARD: |
|
|
y = ts.r.values |
|
|
elif yaxis == Y_TIMESTEPS: |
|
|
y = ts.l.values |
|
|
else: |
|
|
raise NotImplementedError |
|
|
return x, y |
|
|
|
|
|
def plot_curves(xy_list, xaxis, yaxis, title): |
|
|
fig = plt.figure(figsize=(8,2)) |
|
|
maxx = max(xy[0][-1] for xy in xy_list) |
|
|
minx = 0 |
|
|
for (i, (x, y)) in enumerate(xy_list): |
|
|
color = COLORS[i % len(COLORS)] |
|
|
plt.scatter(x, y, s=2) |
|
|
x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) |
|
|
plt.plot(x, y_mean, color=color) |
|
|
plt.xlim(minx, maxx) |
|
|
plt.title(title) |
|
|
plt.xlabel(xaxis) |
|
|
plt.ylabel(yaxis) |
|
|
plt.tight_layout() |
|
|
fig.canvas.mpl_connect('resize_event', lambda event: plt.tight_layout()) |
|
|
plt.grid(True) |
|
|
|
|
|
|
|
|
def split_by_task(taskpath): |
|
|
return taskpath['dirname'].split('/')[-1].split('-')[0] |
|
|
|
|
|
def plot_results(dirs, num_timesteps=10e6, xaxis=X_TIMESTEPS, yaxis=Y_REWARD, title='', split_fn=split_by_task): |
|
|
results = plot_util.load_results(dirs) |
|
|
plot_util.plot_results(results, xy_fn=lambda r: ts2xy(r['monitor'], xaxis, yaxis), split_fn=split_fn, average_group=True, resample=int(1e6)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
import argparse |
|
|
import os |
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
parser.add_argument('--dirs', help='List of log directories', nargs = '*', default=['./log']) |
|
|
parser.add_argument('--num_timesteps', type=int, default=int(10e6)) |
|
|
parser.add_argument('--xaxis', help = 'Varible on X-axis', default = X_TIMESTEPS) |
|
|
parser.add_argument('--yaxis', help = 'Varible on Y-axis', default = Y_REWARD) |
|
|
parser.add_argument('--task_name', help = 'Title of plot', default = 'Breakout') |
|
|
args = parser.parse_args() |
|
|
args.dirs = [os.path.abspath(dir) for dir in args.dirs] |
|
|
plot_results(args.dirs, args.num_timesteps, args.xaxis, args.yaxis, args.task_name) |
|
|
plt.show() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
main() |
|
|
|