YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
Model Card of lmqg/mt5-small-esquad-ae
This model is fine-tuned version of google/mt5-small for answer extraction on the lmqg/qg_esquad (dataset_name: default) via lmqg.
Overview
- Language model: google/mt5-small
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-ae")
# model prediction
answers = model.generate_a("a noviembre , que es también la estación lluviosa.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-ae")
output = pipe("<hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")
Evaluation
- Metric (Answer Extraction): raw metric file
| Score | Type | Dataset | |
|---|---|---|---|
| AnswerExactMatch | 56.14 | default | lmqg/qg_esquad |
| AnswerF1Score | 73.93 | default | lmqg/qg_esquad |
| BERTScore | 89.86 | default | lmqg/qg_esquad |
| Bleu_1 | 36.7 | default | lmqg/qg_esquad |
| Bleu_2 | 31.79 | default | lmqg/qg_esquad |
| Bleu_3 | 28.08 | default | lmqg/qg_esquad |
| Bleu_4 | 24.92 | default | lmqg/qg_esquad |
| METEOR | 41.91 | default | lmqg/qg_esquad |
| MoverScore | 80.26 | default | lmqg/qg_esquad |
| ROUGE_L | 48.75 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 32
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 7
Dataset used to train lmqg/mt5-small-esquad-ae
Evaluation results
- BLEU4 (Answer Extraction) on lmqg/qg_esquadself-reported24.920
- ROUGE-L (Answer Extraction) on lmqg/qg_esquadself-reported48.750
- METEOR (Answer Extraction) on lmqg/qg_esquadself-reported41.910
- BERTScore (Answer Extraction) on lmqg/qg_esquadself-reported89.860
- MoverScore (Answer Extraction) on lmqg/qg_esquadself-reported80.260
- AnswerF1Score (Answer Extraction) on lmqg/qg_esquadself-reported73.930
- AnswerExactMatch (Answer Extraction) on lmqg/qg_esquadself-reported56.140