my_indo_2_model
my_indo_2_model is a fine-tuned version of FacebookAI/xlm-roberta-base on a custom Indonesian question answering dataset using the SQuAD-style extractive QA format.
The model was trained to extract span-based answers from a given context in response to a question in Bahasa Indonesia. It is suitable for building QA systems or chatbot backends for Indonesian language applications.
🧠 Model Description
- Base model: FacebookAI/xlm-roberta-base
- Task: Extractive Question Answering
- Language: Multilingual (fokus pada Bahasa Indonesia)
- Tokenizer:
xlm-roberta-basetokenizer - Training format: SQuAD-style JSON format (question, context, answer)
📈 Evaluation Results
The model was evaluated on a held-out validation set with the following results:
| Metric | Value |
|---|---|
| Loss | 1.3813 |
| Exact Match | 43.73% |
| F1 Score | 64.92% |
| Runtime | 13.14 s |
| Eval speed | 48.55 samples/sec |
These results indicate that the model performs reasonably well on extractive question answering tasks in Bahasa Indonesia.
✅ Intended Uses & Limitations
Intended Uses:
- Membangun chatbot atau QA system berbasis teks Bahasa Indonesia
- Menjawab pertanyaan berbasis konteks dokumen
- Digunakan dalam riset atau pembelajaran NLP untuk low-resource languages
Limitations:
- Hanya dapat menjawab pertanyaan dengan tipe span-based (jawaban eksplisit di dalam konteks)
- Tidak didesain untuk pertanyaan tipe "yes/no", "unanswerable", atau open-ended
- Belum diuji pada domain di luar dataset pelatihan (e.g. kedokteran, hukum, dsb.)
📚 Training & Evaluation Data
- Dataset: Custom Indonesian dataset (subset SPAN only)
- Jumlah data: Tidak disebutkan (silakan update jika tersedia)
- Format: JSON dengan kolom
question,context, dananswer - Distribusi: 80% training – 20% validation
⚙️ Training Procedure
Hyperparameters:
- Learning rate: 2e-5
- Train batch size: 16
- Eval batch size: 16
- Epochs: 3
- Optimizer: AdamW (betas=(0.9, 0.999), epsilon=1e-8)
- LR scheduler: linear
Training Logs:
| Epoch | Step | Validation Loss |
|---|---|---|
| 1 | 160 | 2.0673 |
| 2 | 320 | 1.4765 |
| 3 | 480 | 1.3813 |
🛠 Framework Versions
- Transformers: 4.54.1
- PyTorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.4
📤 How to Use
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("your-username/my_indo_2_model")
model = AutoModelForQuestionAnswering.from_pretrained("your-username/my_indo_2_model")
question = "Siapa presiden ketiga Indonesia?"
context = "Bacharuddin Jusuf Habibie adalah Presiden ketiga Republik Indonesia yang menjabat dari 1998 hingga 1999."
inputs = tokenizer(question, context, return_tensors="pt", max_length=384, truncation=True)
outputs = model(**inputs)
start = outputs.start_logits.argmax()
end = outputs.end_logits.argmax() + 1
answer = tokenizer.decode(inputs["input_ids"][0][start:end])
print(answer)
- Downloads last month
- 2
Model tree for mzuama/my_indo_2_model
Base model
FacebookAI/xlm-roberta-baseEvaluation results
- Exact Match on Custom Indonesian QA Datasetself-reported43.730
- F1 on Custom Indonesian QA Datasetself-reported64.920