my_indo_2_model

my_indo_2_model is a fine-tuned version of FacebookAI/xlm-roberta-base on a custom Indonesian question answering dataset using the SQuAD-style extractive QA format.

The model was trained to extract span-based answers from a given context in response to a question in Bahasa Indonesia. It is suitable for building QA systems or chatbot backends for Indonesian language applications.


🧠 Model Description

  • Base model: FacebookAI/xlm-roberta-base
  • Task: Extractive Question Answering
  • Language: Multilingual (fokus pada Bahasa Indonesia)
  • Tokenizer: xlm-roberta-base tokenizer
  • Training format: SQuAD-style JSON format (question, context, answer)

📈 Evaluation Results

The model was evaluated on a held-out validation set with the following results:

Metric Value
Loss 1.3813
Exact Match 43.73%
F1 Score 64.92%
Runtime 13.14 s
Eval speed 48.55 samples/sec

These results indicate that the model performs reasonably well on extractive question answering tasks in Bahasa Indonesia.


✅ Intended Uses & Limitations

Intended Uses:

  • Membangun chatbot atau QA system berbasis teks Bahasa Indonesia
  • Menjawab pertanyaan berbasis konteks dokumen
  • Digunakan dalam riset atau pembelajaran NLP untuk low-resource languages

Limitations:

  • Hanya dapat menjawab pertanyaan dengan tipe span-based (jawaban eksplisit di dalam konteks)
  • Tidak didesain untuk pertanyaan tipe "yes/no", "unanswerable", atau open-ended
  • Belum diuji pada domain di luar dataset pelatihan (e.g. kedokteran, hukum, dsb.)

📚 Training & Evaluation Data

  • Dataset: Custom Indonesian dataset (subset SPAN only)
  • Jumlah data: Tidak disebutkan (silakan update jika tersedia)
  • Format: JSON dengan kolom question, context, dan answer
  • Distribusi: 80% training – 20% validation

⚙️ Training Procedure

Hyperparameters:

  • Learning rate: 2e-5
  • Train batch size: 16
  • Eval batch size: 16
  • Epochs: 3
  • Optimizer: AdamW (betas=(0.9, 0.999), epsilon=1e-8)
  • LR scheduler: linear

Training Logs:

Epoch Step Validation Loss
1 160 2.0673
2 320 1.4765
3 480 1.3813

🛠 Framework Versions

  • Transformers: 4.54.1
  • PyTorch: 2.6.0+cu124
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

📤 How to Use

from transformers import AutoTokenizer, AutoModelForQuestionAnswering

tokenizer = AutoTokenizer.from_pretrained("your-username/my_indo_2_model")
model = AutoModelForQuestionAnswering.from_pretrained("your-username/my_indo_2_model")

question = "Siapa presiden ketiga Indonesia?"
context = "Bacharuddin Jusuf Habibie adalah Presiden ketiga Republik Indonesia yang menjabat dari 1998 hingga 1999."

inputs = tokenizer(question, context, return_tensors="pt", max_length=384, truncation=True)
outputs = model(**inputs)

start = outputs.start_logits.argmax()
end = outputs.end_logits.argmax() + 1

answer = tokenizer.decode(inputs["input_ids"][0][start:end])
print(answer)
Downloads last month
2
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mzuama/my_indo_2_model

Finetuned
(3711)
this model

Evaluation results