ooliverz's picture
Upload GitForCausalLM
a1c9a01 verified
|
raw
history blame
2.06 kB
metadata
base_model: microsoft/git-large-r-coco
datasets:
  - imagefolder
library_name: transformers
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: git-large-r-coco-IDB_ADv1_COCOv6-rv2
    results: []

git-large-r-coco-IDB_ADv1_COCOv6-rv2

This model is a fine-tuned version of microsoft/git-large-r-coco on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1043
  • Meteor Score: {'meteor': 0.6687313153455023}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 96
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Meteor Score
1.0495 5.0 5 0.1148 {'meteor': 0.6689391701123871}
1.0158 10.0 10 0.1133 {'meteor': 0.6657644639932019}
0.9478 15.0 15 0.1081 {'meteor': 0.6626441748430653}
0.8514 20.0 20 0.1043 {'meteor': 0.6687313153455023}

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.2