language:
- en
- he
tags:
- translation
license: cc-by-4.0
datasets:
- quickmt/quickmt-train.he-en
model-index:
- name: quickmt-en-he
results:
- task:
name: Translation eng-heb
type: translation
args: eng-heb
dataset:
name: flores101-devtest
type: flores_101
args: eng_Latn heb_Hebr devtest
metrics:
- name: BLEU
type: bleu
value: 34.32
- name: CHRF
type: chrf
value: 62.37
- name: COMET
type: comet
value: 87.91
quickmt-en-he Neural Machine Translation Model
quickmt-en-he is a reasonably fast and reasonably accurate neural machine translation model for translation from en into he.
Try it on our Huggingface Space
Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
Model Information
- Trained using
eole - 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
- 32k separate Sentencepiece vocabs
- Expested for fast inference to CTranslate2 format
- Training data: https://huggingface.co/datasets/quickmt/quickmt-train.he-en/tree/main
See the eole model configuration in this repository for further details and the eole-model for the raw eole (pytorch) model.
Usage with quickmt
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
Next, install the quickmt python library and download the model:
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
quickmt-model-download quickmt/quickmt-en-he ./quickmt-en-he
Finally use the model in python:
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-en-he/", device="auto")
# Translate - set beam size to 1 for faster speed (but lower quality)
sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
t(sample_text, beam_size=5)
'讚"专 讗讛讜讚 讗讜专, 驻专讜驻住讜专 诇专驻讜讗讛 讘讗讜谞讬讘专住讬讟转 讚诇讛讜讝讬 讘讛诇讬驻拽住, 谞讜讘讛 住拽讜讟讬讛 讜讬讜"专 讛诪讞诇拽讛 讛拽诇讬谞讬转 讜讛诪讚注讬转 砖诇 讛讗讙讜讚讛 讛拽谞讚讬转 诇住讜讻专转, 讛讝讛讬专 讻讬 讛诪讞拽专 谞诪爪讗 注讚讬讬谉 讘讬诪讬讜 讛专讗砖讜谞讬诐.'
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
'驻专讜驻住讜专 诇专驻讜讗讛 讘讗讜谞讬讘专住讬讟转 讚诇讛讜住专讛 讘讛诇讬驻拽住 讘谞讜讘讛 住拽讜讟讬讛 讜讬讜"专 讛讞讟讬讘讛 讛拽诇讬谞讬转 讜讛诪讞拽专讬转 砖诇 讗讙讜讚转 讛住讜讻专转 讛拽谞讚讬转 讛讝讛讬专 讻讬 讛诪讞拽专 谞诪爪讗 讻讬讜诐 讘转讞讬诇转讜.'
The model is in ctranslate2 format, and the tokenizers are sentencepiece, so you can use ctranslate2 directly instead of through quickmt. It is also possible to get this model to work with e.g. LibreTranslate which also uses ctranslate2 and sentencepiece. A model in safetensors format to be used with eole is also provided.
Metrics
bleu and chrf2 are calculated with sacrebleu on the Flores200 devtest test set ("eng_Latn"->"heb_Hebr"). comet22 with the comet library and the default model. "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
| bleu | chrf2 | comet22 | Time (s) | |
|---|---|---|---|---|
| quickmt/quickmt-en-he | 34.32 | 62.37 | 87.91 | 1.15 |
| facebook/nllb-200-distilled-600M | 23.83 | 53.98 | 84.12 | 25.78 |
| facebook/nllb-200-distilled-1.3B | 29 | 58.64 | 87.23 | 44.79 |
| facebook/m2m100_418M | 20.53 | 50.74 | 81.38 | 21.7 |
| facebook/m2m100_1.2B | 23.78 | 53.73 | 83.81 | 41.71 |