deberta-toxic-reward-grpo2
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3737
- Accuracy: 0.8049
- Precision: 0.7432
- Recall: 0.9948
- F1: 0.8508
- Auc: 0.8926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc |
|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 71 | 0.3875 | 0.7164 | 0.8763 | 0.5741 | 0.6937 | 0.8758 |
| No log | 2.0 | 142 | 0.3601 | 0.8029 | 0.7437 | 0.9881 | 0.8487 | 0.8898 |
| No log | 3.0 | 213 | 0.3846 | 0.8026 | 0.7449 | 0.9843 | 0.8480 | 0.8906 |
| No log | 4.0 | 284 | 0.3749 | 0.8035 | 0.7458 | 0.9843 | 0.8486 | 0.8912 |
| No log | 5.0 | 355 | 0.3739 | 0.8050 | 0.7434 | 0.9948 | 0.8509 | 0.8927 |
| No log | 6.0 | 426 | 0.3768 | 0.8055 | 0.7452 | 0.9913 | 0.8508 | 0.8938 |
| No log | 7.0 | 497 | 0.3784 | 0.8064 | 0.7673 | 0.9386 | 0.8444 | 0.8941 |
| 0.3565 | 8.0 | 568 | 0.3834 | 0.8071 | 0.7653 | 0.9450 | 0.8457 | 0.8942 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu130
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for reichenbach/deberta-toxic-reward-grpo2
Base model
microsoft/deberta-v3-base