app-cmkofd-64 / updated_models.py
AiCoderv2's picture
Update Gradio app with multiple files
6a6c658 verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from typing import List, Dict, Any, Optional
import logging
import asyncio
import threading
logger = logging.getLogger(__name__)
class CodeModel:
"""5B Parameter coding model wrapper with optimized inference."""
def __init__(self):
self.model_name = "bigcode/starcoder2-7b" # 7B model (closest to 5B with excellent coding)
self.parameter_count = "7B"
self.max_length = 16384
self.tokenizer = None
self.model = None
self.pipeline = None
self.is_loaded = False
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._lock = threading.Lock()
@spaces.GPU(duration=1200) # Extended duration for model loading
def load_model(self):
"""Load the model (called via spaces decorator for optimization)."""
try:
logger.info(f"Loading {self.model_name} model...")
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="left"
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with optimization
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_cache=True
)
# Set model to evaluation mode
self.model.eval()
# Create pipeline for easier inference
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if self.device == "cuda" else -1,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=2048,
pad_token_id=self.tokenizer.eos_token_id
)
self.is_loaded = True
logger.info(f"βœ… {self.model_name} loaded successfully on {self.device}")
except Exception as e:
logger.error(f"❌ Error loading model: {e}")
self._fallback_model()
def _fallback_model(self):
"""Fallback to a smaller model if the main model fails to load."""
try:
logger.info("Trying fallback model: microsoft/DialoGPT-medium")
self.model_name = "microsoft/DialoGPT-medium"
self.parameter_count = "345M"
self.max_length = 1024
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None
)
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if self.device == "cuda" else -1,
max_new_tokens=512,
pad_token_id=self.tokenizer.eos_token_id
)
self.is_loaded = True
logger.info(f"βœ… Fallback model loaded successfully")
except Exception as e:
logger.error(f"❌ Fallback model also failed: {e}")
self.is_loaded = False
def generate(
self,
messages: List[Dict[str, str]],
temperature: float = 0.7,
max_new_tokens: int = 2048,
language: str = "python"
) -> str:
"""Generate response from the model."""
if not self.is_loaded:
return "I'm sorry, the model is not loaded yet. Please try again in a moment."
try:
with self._lock: # Ensure thread-safe access
# Convert chat format to text
if messages:
# Format as conversation
conversation = ""
for msg in messages:
role = msg["role"]
content = msg["content"]
if role == "system":
conversation += f"System: {content}\n\n"
elif role == "user":
conversation += f"Human: {content}\n"
elif role == "assistant":
conversation += f"Assistant: {content}\n"
# Add specific coding instructions
if "write" in conversation.lower() or "code" in conversation.lower():
conversation += f"\n\nPlease provide clean, well-commented {language} code with proper syntax and best practices."
conversation += "\nAssistant:"
# Generate response
with torch.no_grad():
if self.pipeline:
# Use pipeline for generation
outputs = self.pipeline(
conversation,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
return_full_text=False,
clean_up_tokenization_spaces=True
)
if outputs and len(outputs) > 0:
response = outputs[0]["generated_text"].strip()
return response
# Fallback to direct model generation
inputs = self.tokenizer.encode(conversation, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
inputs,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
attention_mask=torch.ones_like(inputs)
)
# Decode response
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
return response.strip()
except Exception as e:
logger.error(f"Generation error: {e}")
return f"I apologize, but I encountered an error while generating the response: {str(e)}"
def get_model_info(self) -> Dict[str, Any]:
"""Get information about the loaded model."""
return {
"model_name": self.model_name,
"parameter_count": self.parameter_count,
"max_length": self.max_length,
"device": self.device,
"is_loaded": self.is_loaded,
"vocab_size": len(self.tokenizer) if self.tokenizer else 0
}
# Global model instance for the server
_global_model = None
def get_model():
"""Get or create the global model instance."""
global _global_model
if _global_model is None:
_global_model = CodeModel()
# Load model asynchronously
threading.Thread(target=_global_model.load_model, daemon=True).start()
return _global_model
def CodeModel():
"""Factory function for creating CodeModel instances."""
return CodeModel()