A newer version of the Gradio SDK is available:
6.1.0
π KGVisualizer Custom Component Development
π Task Overview
Task ID: Task-2.1.1
Phase: Phase 2 - Platform Innovation
Priority: High
Duration: 6 weeks
Owner: Frontend + Full Stack Team
π― Objective
Build a custom Gradio component for interactive knowledge graph visualization using Svelte frontend + Vis.js, creating compelling visual capabilities for agent plan exploration and KG introspection.
π Current Status
- β Solid Foundation: Dynamic Gradio UI with smart prompt handling
- β Rich Data Model: MCPTool, MCPPrompt, PlannedStep objects ready for visualization
- β Graph Data: InMemoryKG with comprehensive relationships and metadata
- β Complete Gap: No visualization component exists - greenfield development
- β οΈ Innovation Opportunity: Custom component for Gradio ecosystem
π Requirements
- Custom Gradio component framework setup
- Svelte frontend with TypeScript
- Vis.js integration for graph rendering
- Python backend data processing
- Interactive node/edge features (hover, click, selection)
- Dynamic layout algorithms
- Responsive design for multiple screen sizes
- Integration with existing KG data structures
π» Implementation Details
// Svelte Frontend Component
<script lang="ts">
export let graphData: GraphData;
export let onNodeClick: (nodeId: string) => void;
export let onEdgeClick: (edgeId: string) => void;
import { Network } from 'vis-network';
let network: Network;
let container: HTMLElement;
const options = {
physics: { enabled: true, stabilization: true },
interaction: { hover: true, selectConnectedEdges: false },
nodes: { borderWidth: 2, shadow: true },
edges: { arrows: { to: true }, smooth: true }
};
onMount(() => {
network = new Network(container, graphData, options);
network.on("click", handleNodeClick);
});
</script>
<div bind:this={container} class="kg-visualizer">
<!-- Interactive graph visualization -->
</div>
# Python Backend Component
class KGVisualizer(gr.Component):
"""Custom Gradio component for knowledge graph visualization."""
def __init__(self, kg: InMemoryKG, **kwargs):
super().__init__(**kwargs)
self.kg = kg
def process_graph_data(self, filters: dict = None) -> GraphData:
"""Convert KG data to vis.js format."""
def get_node_details(self, node_id: str) -> NodeDetails:
"""Get detailed information for node interaction."""
def format_for_visualization(self, data: dict) -> VisualizationData:
"""Format data for frontend consumption."""
β Acceptance Criteria
- Custom Gradio component functional and installable
- Svelte frontend renders KG data with Vis.js
- Interactive features working (hover, click, selection)
- Python backend integrates with existing InMemoryKG
- Multiple layout algorithms available
- Responsive design works on desktop and mobile
- Component integrates seamlessly with existing Gradio UI
- Performance handles 1000+ nodes smoothly
- Documentation and examples provided
π Dependencies
- Builds on: Existing InMemoryKG data structures
- Integrates with: Current Gradio UI architecture
- Uses: MCPTool, MCPPrompt, PlannedStep objects
π Success Metrics
- Visualization renders <2 seconds for 1000+ nodes
- Interactive features responsive (<100ms)
- Component reusable in other Gradio applications
- User engagement with visualization features
- Integration seamless with existing UI
π·οΈ Tags
custom-component, visualization, svelte, gradio, interactive-ui, innovation
π Development Structure
frontend/
kgvisualizer/
package.json
rollup.config.js
src/
KGVisualizer.svelte
types.ts
utils.ts
dist/
python/
gradio_kgvisualizer/
__init__.py
kgvisualizer.py
templates/
tests/
frontend/
test_component.ts
python/
test_kgvisualizer.py
π Development Phases
Week 1-2: Custom Component Framework Setup
- Gradio custom component boilerplate
- Development environment configuration
- Basic Svelte component structure
Week 3-4: Vis.js Integration & Core Features
- Graph rendering with Vis.js
- Basic node/edge visualization
- Layout algorithm integration
Week 5: Interactive Features & Polish
- Hover effects and tooltips
- Click handling and selection
- Responsive design implementation
Week 6: Integration & Testing
- Integration with existing Gradio UI
- Performance optimization
- Documentation and examples
π Integration Points
- Uses existing KG data from InMemoryKG
- Integrates with current Gradio interface layout
- Leverages existing MCPTool and MCPPrompt metadata
- Connects with agent planning visualization
π‘ Innovation Value
- First custom visualization component for KGraph-MCP
- Reusable for broader Gradio ecosystem
- Interactive graph exploration capabilities
- Foundation for advanced visual analytics