kgraph-mcp-agent-platform / docs /progress /mvp2_sprint2_task_summary.md
BasalGanglia's picture
πŸ† Multi-Track Hackathon Submission
1f2d50a verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

MVP 2 Sprint 2 - Task Summary & Execution Guide

Date: 2025-06-08
Sprint Goal: Enhanced Planner for Tool+Prompt Pairs
Status: πŸš€ READY FOR EXECUTION
Task Management: Tasks added to tasks.json (IDs 26-29)

🎯 Sprint Overview

Transform the SimplePlannerAgent from suggesting only tools to suggesting tool+prompt pairs as structured PlannedStep objects, enabling the next evolution toward complete tool+prompt guidance.

Goal Evolution

  • Current (MVP1): User Query β†’ Tool Discovery β†’ Tool Suggestion
  • Sprint 2 Target: User Query β†’ Tool Discovery β†’ Prompt Selection β†’ (Tool + Prompt) Suggestion

πŸ“‹ Task Execution Order

Task 26: Define PlannedStep Dataclass (60 mins)

Status: Todo
Dependencies: None
Priority: πŸ”΄ HIGH (Foundation for all other tasks)

Execution Command for Claude:

Implement Task 26: Define PlannedStep Dataclass

**Objective**: Create structured data representation for planner output combining MCPTool and MCPPrompt.

**Action 1: Modify `kg_services/ontology.py`**
1. Open @kg_services/ontology.py  
2. Add PlannedStep dataclass below existing MCPPrompt class
3. Include fields: tool (MCPTool), prompt (MCPPrompt), relevance_score (Optional[float] = None)
4. Add proper type hints and imports
5. Apply coding standards from @.cursor/rules/python_gradio_basic.mdc

**Action 2: Add Tests in `tests/kg_services/test_ontology.py`**  
1. Open @tests/kg_services/test_ontology.py
2. Add test_planned_step_creation() function
3. Test PlannedStep instantiation with valid MCPTool and MCPPrompt
4. Test type safety and field access
5. Test optional relevance_score functionality

Generate the complete implementation.

Task 27: Refactor SimplePlannerAgent (180 mins)

Status: Todo
Dependencies: Task 26
Priority: πŸ”΄ HIGH (Core logic transformation)

Execution Command for Claude:

Implement Task 27: Refactor SimplePlannerAgent for Tool+Prompt Planning

**Objective**: Implement combined tool+prompt selection logic with semantic ranking.

**Action 1: Modify `agents/planner.py`**
1. Open @agents/planner.py
2. Import PlannedStep from kg_services.ontology
3. Rename suggest_tools method to generate_plan
4. Implement algorithm:
   - Tool Selection: Use existing semantic search for tools
   - Prompt Filtering: Get prompts by target_tool_id
   - Prompt Ranking: Semantic similarity against query
   - PlannedStep Assembly: Create structured output
5. Add _select_best_prompt helper method
6. Return List[PlannedStep] instead of List[MCPTool]

**Action 2: Update `tests/agents/test_planner.py`**
1. Update all test methods for new generate_plan signature
2. Mock InMemoryKG prompt methods
3. Test scenarios: no tools, no prompts for tool, single prompt, multiple prompts
4. Verify PlannedStep output structure

Generate the complete refactored implementation.

Task 28: Update Application Integration (45 mins)

Status: Todo
Dependencies: Task 27
Priority: 🟑 MEDIUM (Integration layer)

Execution Command for Claude:

Implement Task 28: Update Application Integration for New Planner

**Objective**: Ensure application backend uses enhanced planner without breaking UI.

**Action 1: Modify `app.py`**
1. Open @app.py
2. Update handle_find_tools function:
   - Change planner call from suggest_tools to generate_plan
   - Handle List[PlannedStep] return type
   - Extract tool from PlannedStep for current UI (temporary)
   - Add proper error handling for empty results
3. Import PlannedStep if needed

**Action 2: Update `tests/test_app.py`**
1. Update mocked planner method calls
2. Test new generate_plan integration
3. Verify backward compatibility for UI display

Maintain backward compatibility until Sprint 3 UI updates.

Task 29: Quality Assurance & Deployment (30 mins)

Status: Todo
Dependencies: Task 28
Priority: 🟒 LOW (Quality gates)

Execution Command for Claude:

Implement Task 29: Quality Assurance & Deployment

**Objective**: Ensure code quality, system stability, and deployment readiness.

**Actions**:
1. Run `just lint` and fix any style issues
2. Run `just format` to apply formatting
3. Run `just type-check` and resolve type issues
4. Run `just test` and ensure all tests pass
5. Manual integration testing:
   - Verify application starts successfully
   - Test tool+prompt planning workflow
   - Confirm no UI crashes
6. Update requirements.lock if needed
7. Commit changes with conventional commit format
8. Push and verify CI pipeline

Document any issues found for Sprint 3.

πŸ”§ Technical Implementation Details

PlannedStep Structure

@dataclass
class PlannedStep:
    """Represents a planned step combining a tool and its prompt."""
    tool: MCPTool
    prompt: MCPPrompt
    relevance_score: Optional[float] = None

Enhanced Planning Algorithm

def generate_plan(self, user_query: str, top_k_plans: int = 1) -> List[PlannedStep]:
    # 1. Get query embedding
    query_embedding = self.embedder.get_embedding(user_query)
    
    # 2. Find candidate tools (semantic search)
    tool_ids = self.kg.find_similar_tools(query_embedding, top_k=3)
    
    # 3. For each tool, find and rank prompts
    planned_steps = []
    for tool_id in tool_ids:
        tool = self.kg.get_tool_by_id(tool_id)
        
        # Filter prompts for this tool
        prompts = [p for p in self.kg.prompts.values() 
                  if p.target_tool_id == tool.tool_id]
        
        # Select best prompt semantically
        best_prompt = self._select_best_prompt(prompts, query_embedding)
        
        if best_prompt:
            planned_steps.append(PlannedStep(tool=tool, prompt=best_prompt))
    
    return planned_steps[:top_k_plans]

Semantic Prompt Selection

def _select_best_prompt(self, prompts: List[MCPPrompt], 
                       query_embedding: List[float]) -> Optional[MCPPrompt]:
    if not prompts:
        return None
    if len(prompts) == 1:
        return prompts[0]
    
    best_prompt = None
    best_similarity = -1.0
    
    for prompt in prompts:
        # Create embedding text from prompt
        prompt_text = f"{prompt.name} - {prompt.description} - {prompt.use_case}"
        prompt_embedding = self.embedder.get_embedding(prompt_text)
        
        if prompt_embedding:
            similarity = self.kg._cosine_similarity(query_embedding, prompt_embedding)
            if similarity > best_similarity:
                best_similarity = similarity
                best_prompt = prompt
    
    return best_prompt

πŸ§ͺ Testing Strategy

Key Test Scenarios

  1. PlannedStep Creation: Valid instantiation and field access
  2. No Tools Found: Empty list return from generate_plan
  3. Tool Without Prompts: Graceful handling and skipping
  4. Single Prompt for Tool: Direct selection
  5. Multiple Prompts for Tool: Semantic ranking selection
  6. Application Integration: Backward compatible UI interaction

Test Coverage Targets

  • Unit Tests: >95% coverage for new PlannedStep and planning logic
  • Integration Tests: End-to-end workflow validation
  • Regression Tests: Ensure no breaking changes to existing functionality

πŸ“Š Success Criteria

Component Success Metric Validation
PlannedStep Dataclass works correctly Unit tests pass
Enhanced Planner Tool+prompt selection accurate Integration tests
Application No UI crashes, backward compatible Manual testing
Code Quality All quality checks pass CI pipeline

πŸ”„ Sprint 3 Preparation

Upon Sprint 2 completion, the system will be ready for Sprint 3 which focuses on:

  • UI Enhancement: Display rich PlannedStep information
  • Prompt Template Rendering: Show template strings with variables
  • Interactive Elements: Dynamic input field generation
  • User Experience: Enhanced tool+prompt workflow interface

🚨 Potential Challenges & Mitigations

  1. Semantic Prompt Selection Complexity

    • Challenge: Multiple prompts with similar semantics
    • Mitigation: Start with simple cosine similarity, add tie-breaking rules
  2. Performance with Prompt Embeddings

    • Challenge: Additional API calls for prompt ranking
    • Mitigation: Use pre-computed embeddings where possible
  3. Backward Compatibility

    • Challenge: UI expects tool-only format
    • Mitigation: Extract tool from PlannedStep for display
  4. Test Complexity

    • Challenge: Mocking complex tool+prompt interactions
    • Mitigation: Use focused unit tests with clear test data

Ready for Execution: All tasks are well-defined with clear objectives, detailed implementation guidance, and comprehensive acceptance criteria. The task dependency chain ensures proper execution order and minimal blocking.

Sprint 2 Task Summary created for MVP 2 - Enhanced Planner for Tool+Prompt Pairs