BasalGanglia's picture
πŸ† Multi-Track Hackathon Submission
1f2d50a verified
"""Tool Discovery Engine for MVP 1: KG-Powered Tool Suggester."""
import logging
import os
from dataclasses import dataclass
from datetime import datetime
from typing import Any
import numpy as np
from openai import OpenAI
from pydantic import BaseModel, Field
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MCPTool(BaseModel):
"""MCP Tool data model for the Knowledge Graph."""
id: str = Field(description="Unique tool identifier")
name: str = Field(description="Human-readable tool name")
description: str = Field(description="Detailed tool description")
category: str = Field(description="Tool category")
capabilities: list[str] = Field(
default_factory=list, description="Tool capabilities"
)
input_types: list[str] = Field(
default_factory=list, description="Supported input types"
)
output_types: list[str] = Field(
default_factory=list, description="Supported output types"
)
tags: list[str] = Field(default_factory=list, description="Search tags")
complexity: str = Field(default="medium", description="Tool complexity level")
created_at: datetime = Field(default_factory=datetime.now)
class ToolSearchCriteria(BaseModel):
"""Search criteria for tool discovery."""
query: str = Field(description="User's natural language query")
max_results: int = Field(default=3, description="Maximum number of results")
category_filter: str | None = Field(None, description="Filter by tool category")
complexity_filter: str | None = Field(None, description="Filter by complexity")
@dataclass
class ToolMatch:
"""Represents a tool match with similarity score."""
tool: MCPTool
similarity_score: float
tool_id: str
def __post_init__(self):
if not self.tool_id:
self.tool_id = self.tool.id
class EmbeddingService:
"""Service for generating and comparing embeddings."""
def __init__(self):
"""Initialize embedding service with OpenAI client."""
self.client = None
self._initialize_client()
def _initialize_client(self):
"""Initialize OpenAI client if API key available."""
api_key = os.getenv("OPENAI_API_KEY")
if api_key:
try:
self.client = OpenAI(api_key=api_key)
logger.info("OpenAI client initialized successfully")
except Exception as e:
logger.warning(f"Failed to initialize OpenAI client: {e}")
self.client = None
else:
logger.warning("OPENAI_API_KEY not found, using mock embeddings")
def get_embedding(self, text: str) -> list[float]:
"""Generate embedding for text."""
if self.client:
return self._get_openai_embedding(text)
return self._get_mock_embedding(text)
def _get_openai_embedding(self, text: str) -> list[float]:
"""Get embedding from OpenAI API."""
try:
response = self.client.embeddings.create(
model="text-embedding-3-small", input=text, encoding_format="float"
)
return response.data[0].embedding
except Exception as e:
logger.error(f"Failed to get OpenAI embedding: {e}")
return self._get_mock_embedding(text)
def _get_mock_embedding(self, text: str) -> list[float]:
"""Generate mock embedding for testing/demo purposes."""
# Create deterministic embedding based on text content
# This is for demo purposes when OpenAI API is not available
np.random.seed(hash(text) % 2**32)
embedding = np.random.rand(384).tolist()
# Add some semantic meaning by adjusting based on keywords
keywords = {
"summarize": [1.0, 0.8, 0.6],
"sentiment": [0.8, 1.0, 0.7],
"image": [0.6, 0.7, 1.0],
"translate": [0.7, 0.6, 0.8],
"analyze": [0.9, 0.8, 0.7],
}
text_lower = text.lower()
for keyword, weights in keywords.items():
if keyword in text_lower:
for i, weight in enumerate(weights):
if i < len(embedding):
embedding[i] *= weight
return embedding
def calculate_similarity(
self, embedding1: list[float], embedding2: list[float]
) -> float:
"""Calculate cosine similarity between two embeddings."""
vec1 = np.array(embedding1)
vec2 = np.array(embedding2)
# Normalize vectors
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
if norm1 == 0 or norm2 == 0:
return 0.0
vec1_normalized = vec1 / norm1
vec2_normalized = vec2 / norm2
# Calculate cosine similarity
similarity = np.dot(vec1_normalized, vec2_normalized)
return float(similarity)
class KnowledgeGraphService:
"""In-memory Knowledge Graph for tool metadata."""
def __init__(self):
"""Initialize in-memory storage."""
self.tools: dict[str, dict[str, Any]] = {}
self.embeddings: dict[str, list[float]] = {}
self.embedding_service = EmbeddingService()
def store_tool(self, tool_data: dict[str, Any]) -> None:
"""Store tool metadata and generate embedding."""
tool_id = tool_data["id"]
self.tools[tool_id] = tool_data
# Generate embedding for tool description
description = tool_data.get("description", "")
embedding = self.embedding_service.get_embedding(description)
self.embeddings[tool_id] = embedding
logger.info(f"Stored tool: {tool_id}")
def get_tool(self, tool_id: str) -> dict[str, Any] | None:
"""Retrieve tool by ID."""
return self.tools.get(tool_id)
def find_tools_by_capability(self, capability: str) -> list[dict[str, Any]]:
"""Find tools that have a specific capability."""
matching_tools = []
for tool_data in self.tools.values():
capabilities = tool_data.get("capabilities", [])
if capability in capabilities:
matching_tools.append(tool_data)
return matching_tools
def search_by_similarity(
self, query_embedding: list[float], max_results: int = 3
) -> list[tuple[str, float]]:
"""Search tools by embedding similarity."""
similarities = []
for tool_id, tool_embedding in self.embeddings.items():
similarity = self.embedding_service.calculate_similarity(
query_embedding, tool_embedding
)
similarities.append((tool_id, similarity))
# Sort by similarity (descending) and return top results
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:max_results]
def get_all_tools(self) -> list[dict[str, Any]]:
"""Get all stored tools."""
return list(self.tools.values())
class ToolDiscoveryEngine:
"""Main tool discovery engine for MVP 1."""
def __init__(self):
"""Initialize discovery engine with curated tools."""
self.kg_service = KnowledgeGraphService()
self.embedding_service = EmbeddingService()
self._load_curated_tools()
def _load_curated_tools(self) -> None:
"""Load curated mini-KG with 3-5 diverse MCP tools for MVP 1."""
curated_tools = [
{
"id": "summarizer",
"name": "Text Summarizer",
"description": "Summarizes long text documents into concise key points and bullet points. Perfect for news articles, research papers, and lengthy content.",
"category": "text_processing",
"capabilities": ["summarization", "text_analysis", "key_extraction"],
"input_types": ["text", "document"],
"output_types": ["text", "bullet_points"],
"tags": ["summarize", "compress", "key points", "extract"],
"complexity": "easy",
},
{
"id": "sentiment_analyzer",
"name": "Sentiment Analyzer",
"description": "Analyzes the emotional tone and sentiment of text content. Detects positive, negative, or neutral sentiment with confidence scores.",
"category": "text_analysis",
"capabilities": [
"sentiment_analysis",
"emotion_detection",
"mood_analysis",
],
"input_types": ["text", "social_media"],
"output_types": ["sentiment_score", "emotion_labels"],
"tags": ["sentiment", "emotion", "mood", "analyze", "feeling"],
"complexity": "medium",
},
{
"id": "image_generator",
"name": "Image Generator",
"description": "Generates creative images from text descriptions using AI. Creates artwork, illustrations, and visual content from natural language prompts.",
"category": "creative",
"capabilities": ["image_generation", "art_creation", "visual_design"],
"input_types": ["text_prompt", "description"],
"output_types": ["image", "artwork"],
"tags": ["image", "generate", "create", "art", "visual", "picture"],
"complexity": "medium",
},
{
"id": "translator",
"name": "Language Translator",
"description": "Translates text between multiple languages with high accuracy. Supports over 100 languages and preserves context and meaning.",
"category": "language",
"capabilities": ["translation", "language_detection", "multilingual"],
"input_types": ["text", "document"],
"output_types": ["translated_text"],
"tags": ["translate", "language", "multilingual", "convert"],
"complexity": "easy",
},
{
"id": "code_analyzer",
"name": "Code Analyzer",
"description": "Analyzes code quality, detects bugs, suggests improvements, and provides security recommendations for various programming languages.",
"category": "development",
"capabilities": [
"code_analysis",
"bug_detection",
"security_audit",
"quality_assessment",
],
"input_types": ["source_code", "repository"],
"output_types": ["analysis_report", "recommendations"],
"tags": ["code", "analyze", "bugs", "security", "quality", "review"],
"complexity": "advanced",
},
]
# Store all curated tools
for tool_data in curated_tools:
self.kg_service.store_tool(tool_data)
logger.info(f"Loaded {len(curated_tools)} curated MCP tools")
def load_curated_tools(self) -> list[MCPTool]:
"""Return curated tools as MCPTool objects."""
tools = []
for tool_data in self.kg_service.get_all_tools():
tool = MCPTool(**tool_data)
tools.append(tool)
return tools
def get_tool_by_id(self, tool_id: str) -> MCPTool | None:
"""Get specific tool by ID."""
tool_data = self.kg_service.get_tool(tool_id)
if tool_data:
return MCPTool(**tool_data)
return None
def search_tools(self, criteria: ToolSearchCriteria) -> list[ToolMatch]:
"""Search for tools based on user query using semantic similarity."""
# Generate embedding for user query
query_embedding = self.embedding_service.get_embedding(criteria.query)
# Find similar tools
similar_tools = self.kg_service.search_by_similarity(
query_embedding, criteria.max_results
)
results = []
for tool_id, similarity_score in similar_tools:
tool_data = self.kg_service.get_tool(tool_id)
if tool_data:
# Apply filters if specified
if (
criteria.category_filter
and tool_data.get("category") != criteria.category_filter
):
continue
if (
criteria.complexity_filter
and tool_data.get("complexity") != criteria.complexity_filter
):
continue
tool = MCPTool(**tool_data)
match = ToolMatch(
tool=tool, similarity_score=similarity_score, tool_id=tool_id
)
results.append(match)
# Sort by similarity score (descending)
results.sort(key=lambda x: x.similarity_score, reverse=True)
logger.info(
f"Found {len(results)} matching tools for query: '{criteria.query}'"
)
return results
def filter_recipes(self, tools: list[MCPTool], **filters) -> list[MCPTool]:
"""Filter tools by various criteria."""
filtered_tools = tools
if "category" in filters:
filtered_tools = [
t for t in filtered_tools if t.category == filters["category"]
]
if "complexity" in filters:
filtered_tools = [
t for t in filtered_tools if t.complexity == filters["complexity"]
]
if "capabilities" in filters:
required_caps = filters["capabilities"]
filtered_tools = [
t
for t in filtered_tools
if any(cap in t.capabilities for cap in required_caps)
]
return filtered_tools
def sort_recipes(
self, tools: list[MCPTool], sort_by: str = "name"
) -> list[MCPTool]:
"""Sort tools by specified criteria."""
if sort_by == "name":
return sorted(tools, key=lambda t: t.name)
if sort_by == "complexity":
complexity_order = {"easy": 1, "medium": 2, "advanced": 3}
return sorted(tools, key=lambda t: complexity_order.get(t.complexity, 2))
if sort_by == "category":
return sorted(tools, key=lambda t: t.category)
return tools
# Alias for consistency with the previous naming
RecipeRecommendationEngine = ToolDiscoveryEngine
SearchResult = ToolMatch
RecommendationScore = float
# Export all components
__all__ = [
"EmbeddingService",
"KnowledgeGraphService",
"MCPTool",
"RecipeRecommendationEngine",
"RecommendationScore",
"SearchResult",
"ToolDiscoveryEngine",
"ToolMatch",
"ToolSearchCriteria",
]