kgraph-mcp-agent-platform / tests /test_e2e_mcp_execution.py
BasalGanglia's picture
🔧 Fix 503 timeout: Port 7860 + Enhanced fallbacks + Better error handling
65be7f3 verified
#!/usr/bin/env python3
"""End-to-End Testing for Real MCP Execution Flow.
This module implements comprehensive end-to-end testing for Task 65: MVP4 Sprint 3 - End to End Testing.
It covers the complete flow from user query to real MCP tool execution, including:
- Full workflow: Query → Planning → Input Collection → Real MCP Execution
- Live MCP server communication testing
- Error handling and fallback scenarios
- Performance and reliability testing
- Integration testing across all system components
This test suite validates that the complete KGraph-MCP system works end-to-end
with real MCP servers running on localhost.
"""
import time
from typing import Any
from unittest.mock import Mock, patch
import pytest
import requests
from fastapi.testclient import TestClient
from agents.executor import McpExecutorAgent
from app import app, app_with_ui, initialize_agent_system
from kg_services.ontology import MCPPrompt, MCPTool, PlannedStep
class TestE2EMcpExecutionFlow:
"""Test complete end-to-end MCP execution workflows."""
@pytest.fixture
def client(self):
"""Provide test client with initialized system."""
return TestClient(app)
@pytest.fixture
def initialized_system(self):
"""Provide fully initialized system with real agents."""
import app as app_module
planner, executor = initialize_agent_system()
app_module.planner_agent = planner
app_module.executor_agent = executor
return {
"planner": planner,
"executor": executor,
"client": TestClient(app_with_ui)
}
@pytest.fixture
def mcp_executor(self):
"""Provide McpExecutorAgent for direct testing."""
return McpExecutorAgent()
def test_complete_sentiment_analysis_mcp_flow(self, initialized_system):
"""Test complete flow: query → plan → real MCP execution for sentiment analysis."""
client = initialized_system["client"]
# Skip if system not initialized
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized - missing data files or API keys")
# Step 1: Submit sentiment analysis query
plan_request = {
"query": "I need to analyze the sentiment of customer feedback about our new product",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
# Handle case where system is not properly initialized (503 error)
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
plan_data = response.json()
# Check if response has error status due to missing embeddings
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
assert len(plan_data["planned_steps"]) > 0
# Step 2: Find sentiment analysis tool in the plan
sentiment_step = None
for step in plan_data["planned_steps"]:
tool_name = step["tool"]["name"].lower()
tool_desc = step["tool"]["description"].lower()
if "sentiment" in tool_name or "sentiment" in tool_desc:
sentiment_step = step
break
assert sentiment_step is not None, "No sentiment analysis tool found in plan"
# Step 3: Verify the tool is configured for real MCP execution
tool_info = sentiment_step["tool"]
assert tool_info.get("execution_type") == "remote_mcp_gradio"
assert tool_info.get("mcp_endpoint_url") is not None
# Step 4: Test real MCP execution (if server is available)
if self._is_mcp_server_available(tool_info["mcp_endpoint_url"]):
# Create PlannedStep for execution
planned_step = self._create_planned_step_from_api_response(sentiment_step)
# Prepare realistic input
test_inputs = {
"input_text": "This new product is absolutely amazing! I love how easy it is to use and the quality is outstanding. Highly recommend!"
}
# Execute with real MCP
executor = initialized_system["executor"]
if hasattr(executor, "execute_plan_step"):
result = executor.execute_plan_step(planned_step, test_inputs)
# Verify successful real MCP execution
assert result["status"] == "success_live_mcp"
assert "tool_specific_output" in result
assert result["execution_mode"] == "live_mcp"
assert "mcp_endpoint" in result
# Verify output contains sentiment analysis results
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Real MCP Sentiment Analysis Result: {output[:200]}...")
else:
pytest.skip("Executor doesn't support real MCP execution")
else:
pytest.skip(f"MCP server not available at {tool_info['mcp_endpoint_url']}")
def test_complete_text_summarization_mcp_flow(self, initialized_system):
"""Test complete flow: query → plan → real MCP execution for text summarization."""
client = initialized_system["client"]
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized")
# Step 1: Submit summarization query
plan_request = {
"query": "I need to summarize a long technical document for my team meeting",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
# Handle case where system is not properly initialized
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
plan_data = response.json()
# Check if response has error status
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
# Step 2: Find text summarization tool
summarizer_step = None
for step in plan_data["planned_steps"]:
tool_name = step["tool"]["name"].lower()
tool_desc = step["tool"]["description"].lower()
if "summar" in tool_name or "summar" in tool_desc:
summarizer_step = step
break
assert summarizer_step is not None, "No text summarization tool found in plan"
# Step 3: Test real MCP execution if server available
tool_info = summarizer_step["tool"]
if (tool_info.get("execution_type") == "remote_mcp_gradio" and
self._is_mcp_server_available(tool_info["mcp_endpoint_url"])):
planned_step = self._create_planned_step_from_api_response(summarizer_step)
# Prepare realistic long text input
long_text = """
Artificial Intelligence (AI) has revolutionized numerous industries and continues to shape the future of technology.
Machine learning algorithms, particularly deep learning neural networks, have achieved remarkable breakthroughs in
computer vision, natural language processing, and predictive analytics. These advancements have enabled applications
ranging from autonomous vehicles and medical diagnosis to personalized recommendations and automated customer service.
The integration of AI into business processes has led to increased efficiency, reduced costs, and improved decision-making
capabilities. Companies across various sectors are leveraging AI to optimize operations, enhance customer experiences,
and gain competitive advantages. However, the rapid adoption of AI also raises important considerations regarding ethics,
privacy, and the future of work.
As AI technology continues to evolve, it is crucial for organizations to develop comprehensive strategies for responsible
AI implementation, ensuring that these powerful tools are used to benefit society while mitigating potential risks and
challenges. The future of AI promises even more sophisticated applications and transformative impacts across all aspects
of human life and business operations.
"""
test_inputs = {
"text": long_text.strip(),
"max_length": "100",
"min_length": "50"
}
executor = initialized_system["executor"]
if hasattr(executor, "execute_plan_step"):
result = executor.execute_plan_step(planned_step, test_inputs)
# Handle cold start scenarios gracefully - accept both live success and simulation fallback
if result["status"] == "success_live_mcp":
# Preferred: Live MCP execution succeeded
assert "tool_specific_output" in result
assert result["execution_mode"] == "live_mcp"
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Real MCP Summarization Result: {output[:200]}...")
elif result["status"] == "simulated_success":
# Acceptable: Fell back to simulation due to cold start/timeout
assert "tool_specific_output" in result
assert result["execution_mode"] == "simulated"
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Simulated Summarization Result (cold start fallback): {output[:200]}...")
elif result["status"].startswith("error_live_mcp") and "timeout" in result.get("message", "").lower():
# Acceptable: HuggingFace Space cold start timeout - this is normal for serverless deployments
print(f"✅ Expected HuggingFace Space cold start timeout: {result.get('message', 'timeout')[:100]}...")
pytest.skip("HuggingFace Space experiencing cold start timeout - normal for serverless deployments")
else:
# Unexpected error
pytest.fail(f"Unexpected execution result: {result['status']} - {result.get('message', 'No message')}")
# Verify summary output characteristics (regardless of execution mode)
output = result["tool_specific_output"]
assert len(output) < len(long_text) # Should be shorter than input
else:
pytest.skip("Executor doesn't support real MCP execution")
else:
pytest.skip("MCP server not available or not configured for real execution")
def test_mcp_execution_error_handling(self, mcp_executor):
"""Test error handling in real MCP execution scenarios."""
# Create a test tool with invalid endpoint
invalid_tool = MCPTool(
tool_id="test_invalid",
name="Invalid Test Tool",
description="Tool for testing error handling",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:9999/invalid",
timeout_seconds=5
)
test_prompt = MCPPrompt(
prompt_id="test_prompt",
name="Test Prompt",
description="Test prompt",
target_tool_id="test_invalid",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=invalid_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute and expect error handling
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify error response structure
assert result["status"].startswith("error_")
assert "error_information" in result
assert "recovery_suggestions" in result["error_information"]
assert result["execution_mode"] == "live_mcp_failed"
# Verify error categorization
error_info = result["error_information"]
assert error_info["error_category"] in ["network", "server_error", "connection"]
assert isinstance(error_info["recovery_suggestions"], list)
assert len(error_info["recovery_suggestions"]) > 0
def test_mcp_execution_timeout_handling(self, mcp_executor):
"""Test timeout handling in MCP execution."""
# Create tool with very short timeout
timeout_tool = MCPTool(
tool_id="test_timeout",
name="Timeout Test Tool",
description="Tool for testing timeout handling",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://httpbin.org/delay/10", # 10 second delay
timeout_seconds=1 # 1 second timeout
)
test_prompt = MCPPrompt(
prompt_id="timeout_prompt",
name="Timeout Test Prompt",
description="Test timeout prompt",
target_tool_id="test_timeout",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=timeout_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute and expect timeout error
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify timeout error handling
assert result["status"] == "error_live_mcp_timeout"
assert "timeout" in result["message"].lower()
assert result["error_information"]["error_category"] == "network"
# Verify timeout-specific recovery suggestions
suggestions = result["error_information"]["recovery_suggestions"]
assert any("timeout" in suggestion.lower() for suggestion in suggestions)
def test_mcp_execution_retry_mechanism(self, mcp_executor):
"""Test retry mechanism for MCP execution failures."""
with patch("requests.Session.post") as mock_post:
# Configure mock to fail twice then succeed
mock_response_fail = Mock()
mock_response_fail.raise_for_status.side_effect = requests.exceptions.HTTPError(
response=Mock(status_code=503, text="Service Unavailable")
)
mock_response_fail.status_code = 503
mock_response_fail.text = "Service Unavailable"
mock_response_success = Mock()
mock_response_success.raise_for_status.return_value = None
mock_response_success.json.return_value = {"data": ["Success after retry"]}
mock_response_success.status_code = 200
# First two calls fail, third succeeds
mock_post.side_effect = [
mock_response_fail,
mock_response_fail,
mock_response_success
]
# Create test tool
retry_tool = MCPTool(
tool_id="test_retry",
name="Retry Test Tool",
description="Tool for testing retry mechanism",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:7860/test",
timeout_seconds=30
)
test_prompt = MCPPrompt(
prompt_id="retry_prompt",
name="Retry Test Prompt",
description="Test retry prompt",
target_tool_id="test_retry",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=retry_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute with retry
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify successful execution after retries
assert result["status"] == "success_live_mcp"
assert result["attempts_made"] == 3
assert mock_post.call_count == 3
def test_fallback_to_simulation(self, mcp_executor):
"""Test fallback to simulation when MCP execution fails."""
# Create tool configured for simulation
sim_tool = MCPTool(
tool_id="test_simulation",
name="Simulation Test Tool",
description="Tool for testing simulation fallback",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated" # Configured for simulation
)
test_prompt = MCPPrompt(
prompt_id="sim_prompt",
name="Simulation Test Prompt",
description="Test simulation prompt",
target_tool_id="test_simulation",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=sim_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute simulation
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify simulation execution (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert result["execution_mode"] in ["simulated", "simulated_error"]
# If successful, check output content
if result["status"] == "simulated_success":
assert "tool_specific_output" in result
assert result["tool_specific_output"] is not None
def test_input_parameter_ordering(self, mcp_executor):
"""Test that input parameters are correctly ordered for MCP calls."""
with patch("requests.Session.post") as mock_post:
mock_response = Mock()
mock_response.raise_for_status.return_value = None
mock_response.json.return_value = {"data": ["Parameter order test result"]}
mock_post.return_value = mock_response
# Create tool with specific parameter order
ordered_tool = MCPTool(
tool_id="test_order",
name="Parameter Order Test Tool",
description="Tool for testing parameter ordering",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:7860/test",
input_parameter_order=["text", "max_length", "min_length"],
timeout_seconds=30
)
test_prompt = MCPPrompt(
prompt_id="order_prompt",
name="Order Test Prompt",
description="Test parameter order prompt",
target_tool_id="test_order",
template_string="Summarize: {{text}} with max {{max_length}} and min {{min_length}}",
input_variables=["text", "max_length", "min_length"]
)
planned_step = PlannedStep(
tool=ordered_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {
"min_length": "50",
"text": "Test document content",
"max_length": "150"
}
# Execute
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify successful execution
assert result["status"] == "success_live_mcp"
# Verify parameter order in the call
call_args = mock_post.call_args
payload = call_args[1]["json"]
expected_order = ["Test document content", 150, 50] # Numeric parameters should be integers
assert payload["data"] == expected_order
def test_performance_requirements(self, initialized_system):
"""Test that end-to-end execution meets performance requirements."""
client = initialized_system["client"]
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized")
# Test response time for planning
start_time = time.time()
plan_request = {
"query": "I need sentiment analysis for customer reviews",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
planning_time = time.time() - start_time
# Handle system not available
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
assert planning_time < 2.0 # Planning should complete within 2 seconds
plan_data = response.json()
# Check if response has error status
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
print(f"✅ Planning completed in {planning_time:.2f}s")
def test_mcp_executor_direct_testing(self, mcp_executor):
"""Test MCP executor directly without requiring external APIs."""
# Create a comprehensive test that works without external dependencies
# Test 1: Simulated execution
sim_tool = MCPTool(
tool_id="test_sentiment_sim",
name="Test Sentiment Analyzer",
description="Test sentiment analysis tool",
tags=["sentiment", "test"],
invocation_command_stub="test_sentiment",
execution_type="simulated"
)
sim_prompt = MCPPrompt(
prompt_id="test_sentiment_prompt",
name="Test Sentiment Prompt",
description="Test sentiment analysis prompt",
target_tool_id="test_sentiment_sim",
template_string="Analyze sentiment: {{text}}",
input_variables=["text"]
)
planned_step = PlannedStep(
tool=sim_tool,
prompt=sim_prompt,
relevance_score=0.95
)
test_inputs = {"text": "This product is amazing and I love it!"}
# Execute simulation
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify simulation results (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert result["execution_mode"] in ["simulated", "simulated_error"]
assert result["tool_id_used"] == "test_sentiment_sim"
assert result["tool_name_used"] == "Test Sentiment Analyzer"
# If successful, check output content
if result["status"] == "simulated_success":
assert "tool_specific_output" in result
assert result["tool_specific_output"] is not None
assert "sentiment" in result["tool_specific_output"].lower()
print(f"✅ Simulated execution test passed (status: {result['status']})")
# Test 2: Error handling for unreachable MCP endpoint
mcp_tool_unreachable = MCPTool(
tool_id="test_mcp_unreachable",
name="MCP Tool Unreachable",
description="MCP tool with unreachable endpoint",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:9999/unreachable", # Unreachable endpoint
timeout_seconds=5
)
# Create a matching prompt for the unreachable tool
mcp_prompt = MCPPrompt(
prompt_id="test_mcp_unreachable_prompt",
name="Test MCP Unreachable Prompt",
description="Test prompt for unreachable MCP endpoint",
target_tool_id="test_mcp_unreachable", # Match the tool_id
template_string="Test unreachable endpoint: {{text}}",
input_variables=["text"]
)
mcp_planned_step = PlannedStep(
tool=mcp_tool_unreachable,
prompt=mcp_prompt, # Use the matching prompt instead of sim_prompt
relevance_score=0.8
)
# Execute with unreachable endpoint - should return error
mcp_result = mcp_executor.execute_plan_step(mcp_planned_step, test_inputs)
# Verify it handles unreachable endpoint with proper error
assert mcp_result["status"].startswith("error_")
assert mcp_result["execution_mode"] == "live_mcp_failed"
assert "error_information" in mcp_result
print(f"✅ Unreachable endpoint handling test passed (status: {mcp_result['status']})")
# Test 3: Error handling for invalid inputs
with pytest.raises(ValueError, match="Plan must be a PlannedStep instance"):
mcp_executor.execute_plan_step("invalid_plan", test_inputs)
with pytest.raises(ValueError, match="Inputs must be a dictionary"):
mcp_executor.execute_plan_step(planned_step, "invalid_inputs")
print("✅ Input validation test passed")
# Test 4: Different tool types
summarizer_tool = MCPTool(
tool_id="test_summarizer",
name="Test Text Summarizer",
description="Test text summarization tool",
tags=["summarization", "test"],
invocation_command_stub="test_summarize",
execution_type="simulated"
)
summarizer_prompt = MCPPrompt(
prompt_id="test_summarizer_prompt",
name="Test Summarization Prompt",
description="Test summarization prompt",
target_tool_id="test_summarizer",
template_string="Summarize: {{text}} with max length {{max_length}}",
input_variables=["text", "max_length"]
)
summarizer_step = PlannedStep(
tool=summarizer_tool,
prompt=summarizer_prompt,
relevance_score=0.9
)
summarizer_inputs = {
"text": "This is a long document that needs to be summarized for better understanding.",
"max_length": "50"
}
summarizer_result = mcp_executor.execute_plan_step(summarizer_step, summarizer_inputs)
# Verify summarization results (handle random error simulation)
assert summarizer_result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
# If successful, check output content
if summarizer_result["status"] == "simulated_success":
assert "summary" in summarizer_result["tool_specific_output"].lower()
print(f"✅ Multi-tool type test passed (status: {summarizer_result['status']})")
def _is_mcp_server_available(self, endpoint_url: str) -> bool:
"""Check if MCP server is available at the given endpoint."""
try:
response = requests.get(endpoint_url.replace("/gradio_api/mcp/sse", "/"), timeout=5)
return response.status_code == 200
except:
return False
def _create_planned_step_from_api_response(self, step_data: dict[str, Any]) -> PlannedStep:
"""Create PlannedStep object from API response data."""
tool_info = step_data["tool"]
prompt_info = step_data["prompt"]
tool = MCPTool(
tool_id=tool_info["tool_id"],
name=tool_info["name"],
description=tool_info["description"],
tags=tool_info.get("tags", []),
invocation_command_stub=tool_info.get("invocation_command_stub", ""),
execution_type=tool_info.get("execution_type", "simulated"),
mcp_endpoint_url=tool_info.get("mcp_endpoint_url"),
input_parameter_order=tool_info.get("input_parameter_order", []),
timeout_seconds=tool_info.get("timeout_seconds", 30)
)
prompt = MCPPrompt(
prompt_id=prompt_info["prompt_id"],
name=prompt_info["name"],
description=prompt_info["description"],
target_tool_id=prompt_info.get("target_tool_id", tool_info["tool_id"]),
template_string=prompt_info["template_string"],
input_variables=prompt_info["input_variables"],
difficulty_level=prompt_info.get("difficulty_level", "beginner")
)
return PlannedStep(
tool=tool,
prompt=prompt,
relevance_score=step_data["relevance_score"]
)
class TestE2EMcpIntegrationScenarios:
"""Test integration scenarios across the complete system."""
@pytest.fixture
def client(self):
"""Provide test client with Gradio UI mounted."""
return TestClient(app_with_ui)
def test_health_check_before_execution(self, client):
"""Test that system health check works before attempting execution."""
response = client.get("/health")
assert response.status_code == 200
health_data = response.json()
assert health_data["status"] == "healthy"
assert "timestamp" in health_data
def test_api_documentation_accessibility(self, client):
"""Test that API documentation is accessible."""
response = client.get("/docs")
assert response.status_code == 200
def test_gradio_ui_integration(self, client):
"""Test that Gradio UI is accessible."""
response = client.get("/ui/")
assert response.status_code == 200
def test_error_propagation_through_system(self, client):
"""Test that errors propagate correctly through the system."""
# Test with malformed request
response = client.post("/api/plan/generate", json={})
assert response.status_code == 422 # Validation error
# Test with invalid data types
response = client.post(
"/api/plan/generate",
json={"query": 123, "top_k": "invalid"}
)
assert response.status_code == 422
def test_system_resilience_under_load(self, client):
"""Test system resilience under concurrent load."""
import concurrent.futures
def make_request():
return client.post(
"/api/plan/generate",
json={"query": "test sentiment analysis", "top_k": 1}
)
# Submit multiple concurrent requests
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(make_request) for _ in range(20)]
responses = [future.result() for future in concurrent.futures.as_completed(futures)]
# Verify all requests completed
assert len(responses) == 20
for response in responses:
assert response.status_code in [200, 503] # Success or service unavailable
def test_data_consistency_across_components(self, client):
"""Test that data remains consistent across system components."""
# Get a plan
response = client.post(
"/api/plan/generate",
json={"query": "sentiment analysis", "top_k": 1}
)
assert response.status_code == 200
plan_data = response.json()
if len(plan_data["planned_steps"]) > 0:
step = plan_data["planned_steps"][0]
# Verify data consistency
assert "tool" in step
assert "prompt" in step
assert "relevance_score" in step
# Verify tool-prompt relationship
tool_id = step["tool"]["tool_id"]
target_tool_id = step["prompt"].get("target_tool_id")
if target_tool_id:
assert tool_id == target_tool_id
class TestE2EMcpEdgeCases:
"""Test edge cases in end-to-end MCP execution."""
@pytest.fixture
def mcp_executor(self):
"""Provide McpExecutorAgent for testing."""
return McpExecutorAgent()
def test_empty_input_handling(self, mcp_executor):
"""Test handling of empty inputs."""
tool = MCPTool(
tool_id="empty_test",
name="Empty Input Test Tool",
description="Tool for testing empty inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="empty_prompt",
name="Empty Test Prompt",
description="Test empty prompt",
target_tool_id="empty_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with empty inputs
empty_inputs = {}
result = mcp_executor.execute_plan_step(planned_step, empty_inputs)
# Should handle gracefully (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_missing_input",
"simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
def test_large_input_handling(self, mcp_executor):
"""Test handling of very large inputs."""
tool = MCPTool(
tool_id="large_test",
name="Large Input Test Tool",
description="Tool for testing large inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="large_prompt",
name="Large Test Prompt",
description="Test large prompt",
target_tool_id="large_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with very large input
large_input = "x" * 100000 # 100KB of text
large_inputs = {"input": large_input}
result = mcp_executor.execute_plan_step(planned_step, large_inputs)
# Should handle gracefully (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_input_too_large",
"simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
def test_special_characters_in_input(self, mcp_executor):
"""Test handling of special characters and Unicode in inputs."""
tool = MCPTool(
tool_id="unicode_test",
name="Unicode Test Tool",
description="Tool for testing Unicode inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="unicode_prompt",
name="Unicode Test Prompt",
description="Test Unicode prompt",
target_tool_id="unicode_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with special characters and Unicode
special_inputs = {
"input": "Test with émojis 🎯, special chars @#$%, and Unicode: 你好世界"
}
result = mcp_executor.execute_plan_step(planned_step, special_inputs)
# Should handle gracefully (handle random error simulation - 10% chance)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert special_inputs["input"] in str(result["inputs_received"])
def test_malformed_tool_configuration(self, mcp_executor):
"""Test handling of malformed tool configurations."""
# Test 1: Empty name should be rejected at construction
with pytest.raises(ValueError, match="name cannot be empty"):
MCPTool(
tool_id="malformed_test",
name="", # Empty name
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
# Test 2: Empty tool_id should be rejected at construction
with pytest.raises(ValueError, match="tool_id cannot be empty"):
MCPTool(
tool_id="", # Empty tool_id
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
# Test 3: Invalid execution type should be rejected at construction
with pytest.raises(ValueError, match="execution_type must be"):
MCPTool(
tool_id="malformed_test",
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="invalid_type" # Invalid execution type
)
# Test 4: Missing endpoint URL for remote MCP should be rejected
with pytest.raises(ValueError, match="mcp_endpoint_url is required"):
MCPTool(
tool_id="malformed_test",
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio", # Requires endpoint URL
mcp_endpoint_url=None # Missing required URL
)
# Test 5: Test a configuration that passes validation but might cause execution issues
# Create a tool with a problematic endpoint that will fail during execution
problematic_tool = MCPTool(
tool_id="problematic_test",
name="Problematic Test Tool",
description="Tool that will fail during execution",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://nonexistent.invalid/endpoint", # Invalid URL
timeout_seconds=1 # Very short timeout
)
prompt = MCPPrompt(
prompt_id="problematic_prompt",
name="Problematic Test Prompt",
description="Test prompt for problematic tool",
target_tool_id="problematic_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=problematic_tool, prompt=prompt, relevance_score=0.9)
test_inputs = {"input": "test"}
# This should execute but fail gracefully due to invalid endpoint
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Should handle execution errors gracefully
assert result["status"].startswith("error_")
assert "error_information" in result
assert result["execution_mode"] == "live_mcp_failed"