nemaquant / app.py
tyrwh
WorkerPool threading and GPU support
bae5c31
raw
history blame
18.2 kB
import os
import uuid
import traceback
import sys
import io
import zipfile
import cv2
import csv
import pickle
import json
import shutil
from ultralytics import YOLO
from ultralytics.utils import ThreadingLocked
import numpy as np
import pandas as pd
from torch import cuda
from flask import Flask, Response, render_template, request, jsonify, send_from_directory, send_file, session, redirect, url_for
from multiprocessing.pool import ThreadPool
from pathlib import Path
from PIL import Image
from datetime import datetime
from werkzeug.utils import secure_filename
from yolo_utils import detect_in_image
app = Flask(__name__)
app.secret_key = os.environ.get('FLASK_SECRET_KEY', str(uuid.uuid4())) # For session security
APP_ROOT = Path(__file__).parent
UPLOAD_FOLDER = APP_ROOT / 'uploads'
RESULTS_FOLDER = APP_ROOT / 'results'
WEIGHTS_FILE = APP_ROOT / 'weights.pt'
app.config['UPLOAD_FOLDER'] = str(UPLOAD_FOLDER)
app.config['RESULTS_FOLDER'] = str(RESULTS_FOLDER)
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'tif', 'tiff'}
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
RESULTS_FOLDER.mkdir(parents=True, exist_ok=True)
@app.errorhandler(Exception)
def handle_exception(e):
print(f"Unhandled exception: {str(e)}")
print(traceback.format_exc())
return jsonify({"error": "Server error", "log": str(e)}), 500
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
@app.route('/')
def index():
return render_template('index.html')
# Load model once at startup, use CUDA if available
MODEL_DEVICE = 'cuda' if cuda.is_available() else 'cpu'
_model = None
def get_model():
global _model
if _model is None:
_model = YOLO(WEIGHTS_FILE)
if MODEL_DEVICE == 'cuda':
_model.to('cuda')
return _model
def cleanup_session(session_id):
# Remove files for this session
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
results_dir = Path(app.config['RESULTS_FOLDER']) / session_id
for d in [upload_dir, results_dir]:
if d.exists():
shutil.rmtree(d)
# save the uploaded files
@app.route('/uploads', methods=['POST'])
def upload_files():
session_id = session['id']
files = request.files.getlist('files')
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
# clear out any existing files for the session
if upload_dir.exists():
shutil.rmtree(upload_dir)
upload_dir.mkdir(parents=True, exist_ok=True)
# generate new unique filenames via uuid, save the mapping dict of old:new to session
filename_map = {}
for f in files:
orig_name = secure_filename(f.filename)
ext = Path(orig_name).suffix
unique_name = f"{uuid.uuid4().hex}{ext}"
file_path = upload_dir / unique_name
f.save(str(file_path))
filename_map[orig_name] = unique_name
session['filename_map'] = filename_map
return jsonify({'filename_map': filename_map, 'status': 'uploaded'})
# helper function to simplify args for pool.imap
@ThreadingLocked()
def process_single_image(args):
orig_name, img_path, pickle_path, model = args
img_results = detect_in_image(model, str(img_path))
with open(pickle_path, 'wb') as pf:
pickle.dump(img_results, pf)
return (orig_name, img_results)
@app.route('/process', methods=['POST'])
def process_images():
model = get_model()
session_id = session['id']
filename_map = session.get('filename_map', {})
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
state = {}
state['status'] = 'starting'
state['progress'] = 0
state['filename_map'] = filename_map
state['jobId'] = session['id']
session['job_state'] = state
# create a results_dir, clean out old one if needed
results_dir = Path(app.config['RESULTS_FOLDER']) / session_id
if results_dir.exists():
shutil.rmtree(results_dir)
results_dir.mkdir(parents=True)
# set up args list for imap
n_img = len(filename_map)
arg_list = [(orig_name,
upload_dir / filename_map[orig_name],
results_dir / f"{Path(orig_name).stem}_results.pkl",
model) for orig_name in filename_map.keys()]
try:
all_detections = {}
state['status'] = 'processing'
session['job_state'] = state
if MODEL_DEVICE == 'cuda':
pool = None
for idx, args in enumerate(arg_list):
orig_name, img_results = process_single_image(args)
all_detections[orig_name] = img_results
state['progress'] = int((idx + 1) / n_img * 100)
session['job_state'] = state
else:
with ThreadPool() as pool:
for idx, result in enumerate(pool.imap(process_single_image, arg_list)):
state['progress'] = int((idx + 1) / n_img * 100)
orig_name, img_results = result
all_detections[orig_name] = img_results
session['job_state'] = state
# Save all detections to a pickled file
detections_path = results_dir / 'all_detections.pkl'
with open(detections_path, 'wb') as f:
pickle.dump(all_detections, f)
state['status'] = 'completed'
state['progress'] = 100
session['job_state'] = state
except Exception as e:
print(f"Error in /process: {e}")
print(traceback.format_exc())
state['status'] = 'error'
state['error'] = str(e)
state['progress'] = 100
session['job_state'] = state
resp = {
'status': state.get('status', 'unknown'),
'progress': state.get('progress', 0),
'jobId': state.get('jobId'),
'error': state.get('error'),
}
return jsonify(resp)
# Support /progress/<jobId> for frontend polling
@app.route('/progress/<jobId>')
def get_progress_with_id(jobId):
try:
job_state = session.get('job_state')
if not job_state:
print(f"/progress/{jobId}: No job_state found in session.")
return jsonify({"status": "error", "error": "No job state"}), 404
resp = {
'status': job_state.get('status', 'unknown'),
'progress': job_state.get('progress', 0),
'jobId': session.get('id'),
'error': job_state.get('error'),
}
# If completed, load and return all_detections.pkl as JSON
if job_state.get('status') == 'completed':
session_id = session['id']
detections_path = Path(app.config['RESULTS_FOLDER']) / session_id / 'all_detections.pkl'
if detections_path.exists():
with open(detections_path, 'rb') as f:
all_detections = pickle.load(f)
resp['results'] = all_detections
return jsonify(resp)
except Exception as e:
print(f"Error in /progress/{jobId}: {e}")
print(traceback.format_exc())
return jsonify({"status": "error", "error": str(e)}), 500
# /annotate route for dynamic annotation
@app.route('/annotate', methods=['POST'])
def annotate_image():
try:
data = request.get_json()
filename = data.get('filename')
confidence = float(data.get('confidence', 0.5))
session_id = session['id']
filename_map = session.get('filename_map', {})
unique_name = filename_map.get(filename)
if not unique_name:
return jsonify({'error': 'File not found'}), 404
# Load detections from pickle
result_path = Path(app.config['RESULTS_FOLDER']) / session_id / f"{Path(filename).stem}_results.pkl"
if not result_path.exists():
return jsonify({'error': 'Results not found'}), 404
with open(result_path, 'rb') as pf:
detections = pickle.load(pf)
# Load image
img_path = Path(app.config['UPLOAD_FOLDER']) / session_id / unique_name
img = cv2.imread(str(img_path), cv2.IMREAD_UNCHANGED)
# Filter detections
filtered = [d for d in detections if d.get('score', 0) >= confidence]
# Draw boxes
for det in filtered:
x1, y1, x2, y2 = map(int, det['bbox'])
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
# Save annotated image to temp
annotated_path = Path(app.config['RESULTS_FOLDER']) / 'annotated'
annotated_path.mkdir(parents=True, exist_ok=True)
out_name = f"{Path(filename).stem}_annotated.png"
out_file = annotated_path / out_name
cv2.imwrite(str(out_file), img)
# Serve image
with open(out_file, 'rb') as f:
return send_file(
io.BytesIO(f.read()),
mimetype='image/png',
as_attachment=False,
download_name=out_name
)
except Exception as e:
print(f"Error in /annotate: {e}")
return jsonify({'error': str(e)}), 500
@app.route('/results/<path:filename>')
def download_file(filename):
try:
session_id = session['id']
if '..' in filename or filename.startswith('/'):
return jsonify({"error": "Invalid filename"}), 400
safe_filename = secure_filename(filename)
file_dir = Path(app.config['RESULTS_FOLDER']) / session_id
file_path = (file_dir / safe_filename).resolve()
if not str(file_path).startswith(str(file_dir.resolve())):
print(f"Attempted path traversal: {session_id}/{filename}")
return jsonify({"error": "Invalid file path"}), 400
if not file_path.is_file():
if not file_dir.exists():
return jsonify({"error": f"Session directory {session_id} not found"}), 404
files_in_dir = list(file_dir.iterdir())
return jsonify({"error": f"File '{filename}' not found in session '{session_id}'. Available: {[f.name for f in files_in_dir]}"}), 404
if filename.lower().endswith(('.tif', '.tiff')):
try:
with Image.open(file_path) as img:
img = img.convert('RGBA') if img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info) else img.convert('RGB')
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
return send_file(
img_byte_arr,
mimetype='image/png',
as_attachment=False,
download_name=f"{Path(filename).stem}.png"
)
except Exception as e:
print(f"Error converting TIF to PNG: {e}")
return jsonify({"error": "Could not convert TIF image"}), 500
mime_type = None
if safe_filename.lower().endswith(('.png', '.jpg', '.jpeg')):
try:
with Image.open(file_path) as img:
mime_type = 'image/jpeg' if img.format == 'JPEG' else 'image/png'
except Exception as img_err:
print(f"Could not determine MIME type for {safe_filename}: {img_err}")
if safe_filename.lower() == "results.csv":
mime_type = 'text/csv'
return send_file(
str(file_path),
mimetype=mime_type,
as_attachment=True,
download_name=safe_filename
)
return send_file(str(file_path), mimetype=mime_type)
except Exception as e:
error_message = f"File serving error: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_images')
def export_images():
try:
session_id = session['id']
job_dir = Path(app.config['RESULTS_FOLDER']) / session_id
if not job_dir.exists():
return jsonify({"error": f"Session directory {session_id} not found"}), 404
annotated_files = list(job_dir.glob('*_annotated.*'))
if not annotated_files:
return jsonify({"error": "No annotated images found"}), 404
memory_file = io.BytesIO()
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
for file_path in annotated_files:
zf.write(file_path, file_path.name)
memory_file.seek(0)
timestamp = datetime.now().strftime('%Y%m%d-%H%M%S')
return send_file(
memory_file,
mimetype='application/zip',
as_attachment=True,
download_name=f'nemaquant_annotated_{timestamp}.zip'
)
except Exception as e:
error_message = f"Error exporting images: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_csv', methods=['POST'])
def export_csv():
try:
data = request.json
session_id = session['id']
threshold = float(data.get('confidence', 0.5))
job_state = session.get('job_state')
if not job_state:
return jsonify({'error': 'Job not found'}), 404
rows = []
for orig_name, detections in job_state['detections'].items():
count = sum(1 for d in detections if d['score'] >= threshold)
rows.append({'Filename': orig_name, 'EggsDetected': count})
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
output = io.StringIO()
writer = csv.DictWriter(output, fieldnames=['Filename', 'EggsDetected'])
writer.writeheader()
writer.writerows(rows)
output.seek(0)
return Response(
output.getvalue(),
mimetype='text/csv',
headers={
'Content-Disposition': f'attachment; filename=nemaquant_results_{timestamp}.csv'
}
)
except Exception as e:
error_message = f"Error exporting CSV: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_images', methods=['POST'])
def export_images_post():
try:
data = request.json
session_id = session['id']
threshold = float(data.get('confidence', 0.5))
job_state = session.get('job_state')
if not job_state:
return jsonify({'error': 'Job not found'}), 404
memory_file = io.BytesIO()
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
for orig_name, detections in job_state['detections'].items():
unique_name = job_state['filename_map'][orig_name]
img_path = Path(app.config['UPLOAD_FOLDER']) / session_id / unique_name
img = cv2.imread(str(img_path), cv2.IMREAD_UNCHANGED)
filtered = [d for d in detections if d['score'] >= threshold]
for det in filtered:
x1, y1, x2, y2 = map(int, det['bbox'])
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
out_name = f"{Path(orig_name).stem}.png"
_, img_bytes = cv2.imencode('.png', img)
zf.writestr(out_name, img_bytes.tobytes())
memory_file.seek(0)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
return send_file(
memory_file,
mimetype='application/zip',
as_attachment=True,
download_name=f'nemaquant_annotated_{timestamp}.zip'
)
except Exception as e:
error_message = f"Error exporting images: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
def print_startup_info():
print("----- NemaQuant Flask App Starting -----")
print(f"Working directory: {os.getcwd()}")
python_version_single_line = sys.version.replace('\n', ' ')
print(f"Python version: {python_version_single_line}")
print(f"Weights file: {WEIGHTS_FILE}")
print(f"Weights file exists: {WEIGHTS_FILE.exists()}")
if WEIGHTS_FILE.exists():
try:
print(f"Weights file size: {WEIGHTS_FILE.stat().st_size} bytes")
except Exception as e:
print(f"Could not get weights file size: {e}")
is_container = Path('/.dockerenv').exists() or 'DOCKER_HOST' in os.environ
print(f"Running in container: {is_container}")
if is_container:
try:
user_info = f"{os.getuid()}:{os.getgid()}"
print(f"User running process: {user_info}")
except AttributeError:
print("User running process: UID/GID not available on this OS")
for path_str in ["/app/uploads", "/app/results"]:
path_obj = Path(path_str)
if path_obj.exists():
stat_info = path_obj.stat()
permissions = oct(stat_info.st_mode)[-3:]
owner = f"{stat_info.st_uid}:{stat_info.st_gid}"
print(f"Permissions for {path_str}: {permissions}")
print(f"Owner for {path_str}: {owner}")
else:
print(f"Directory {path_str} does not exist.")
nemaquant_script = APP_ROOT / 'nemaquant.py'
print(f"NemaQuant script exists: {nemaquant_script.exists()}")
if nemaquant_script.exists():
try:
permissions = oct(nemaquant_script.stat().st_mode)[-3:]
print(f"NemaQuant script permissions: {permissions}")
except Exception as e:
print(f"Could not get NemaQuant script details: {e}")
@app.before_request
def ensure_session_id():
if 'id' not in session:
session['id'] = str(uuid.uuid4())
# Explicit endpoint for safe session cleanup
@app.route('/cleanup', methods=['POST'])
def cleanup_endpoint():
if 'id' in session:
cleanup_session(session['id'])
session.clear()
return jsonify({'status': 'cleaned up'})
return jsonify({'error': 'No session to clean up'}), 400
if __name__ == '__main__':
print_startup_info()
app.run(host='0.0.0.0', port=7860, debug=True)