Spaces:
Sleeping
Sleeping
File size: 18,181 Bytes
e3446e1 30d5634 7954a1d 0605276 44d1643 e3446e1 bae5c31 a44ba26 bae5c31 228a7ef bae5c31 228a7ef bae5c31 30d5634 228a7ef 44d1643 30d5634 44d1643 bae5c31 44d1643 30d5634 bae5c31 30d5634 bae5c31 30d5634 7954a1d 30d5634 44d1643 30d5634 bae5c31 228a7ef bae5c31 e3446e1 bae5c31 228a7ef e3446e1 228a7ef bae5c31 228a7ef bae5c31 228a7ef a44ba26 228a7ef bae5c31 228a7ef bae5c31 e3446e1 bae5c31 e3446e1 bae5c31 471a225 bae5c31 228a7ef bae5c31 228a7ef bae5c31 228a7ef bae5c31 471a225 bae5c31 228a7ef bae5c31 30d5634 bae5c31 a44ba26 bae5c31 44d1643 bae5c31 e3446e1 bae5c31 e3446e1 bae5c31 30d5634 bae5c31 7954a1d bae5c31 7954a1d 0605276 bae5c31 0605276 44d1643 228a7ef 44d1643 0605276 228a7ef 0605276 228a7ef 0605276 44d1643 0605276 44d1643 0605276 44d1643 0605276 da0b374 0605276 44d1643 7954a1d 30d5634 bae5c31 0605276 bae5c31 0605276 228a7ef 0605276 e3446e1 0605276 30d5634 0605276 e3446e1 0605276 e3446e1 bae5c31 e3446e1 228a7ef a44ba26 e3446e1 a44ba26 e3446e1 a44ba26 e3446e1 44d1643 e3446e1 bae5c31 e3446e1 228a7ef a44ba26 e3446e1 a44ba26 228a7ef a44ba26 e3446e1 a44ba26 e3446e1 44d1643 e3446e1 0605276 bae5c31 0605276 7954a1d 0605276 7954a1d 0605276 44d1643 0605276 aec4e49 0605276 aec4e49 0605276 228a7ef 0605276 44d1643 0605276 44d1643 0605276 44d1643 0605276 44d1643 0605276 44d1643 aec4e49 44d1643 0605276 44d1643 0605276 228a7ef bae5c31 228a7ef bae5c31 228a7ef 0605276 44d1643 e3446e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import os
import uuid
import traceback
import sys
import io
import zipfile
import cv2
import csv
import pickle
import json
import shutil
from ultralytics import YOLO
from ultralytics.utils import ThreadingLocked
import numpy as np
import pandas as pd
from torch import cuda
from flask import Flask, Response, render_template, request, jsonify, send_from_directory, send_file, session, redirect, url_for
from multiprocessing.pool import ThreadPool
from pathlib import Path
from PIL import Image
from datetime import datetime
from werkzeug.utils import secure_filename
from yolo_utils import detect_in_image
app = Flask(__name__)
app.secret_key = os.environ.get('FLASK_SECRET_KEY', str(uuid.uuid4())) # For session security
APP_ROOT = Path(__file__).parent
UPLOAD_FOLDER = APP_ROOT / 'uploads'
RESULTS_FOLDER = APP_ROOT / 'results'
WEIGHTS_FILE = APP_ROOT / 'weights.pt'
app.config['UPLOAD_FOLDER'] = str(UPLOAD_FOLDER)
app.config['RESULTS_FOLDER'] = str(RESULTS_FOLDER)
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'tif', 'tiff'}
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
RESULTS_FOLDER.mkdir(parents=True, exist_ok=True)
@app.errorhandler(Exception)
def handle_exception(e):
print(f"Unhandled exception: {str(e)}")
print(traceback.format_exc())
return jsonify({"error": "Server error", "log": str(e)}), 500
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
@app.route('/')
def index():
return render_template('index.html')
# Load model once at startup, use CUDA if available
MODEL_DEVICE = 'cuda' if cuda.is_available() else 'cpu'
_model = None
def get_model():
global _model
if _model is None:
_model = YOLO(WEIGHTS_FILE)
if MODEL_DEVICE == 'cuda':
_model.to('cuda')
return _model
def cleanup_session(session_id):
# Remove files for this session
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
results_dir = Path(app.config['RESULTS_FOLDER']) / session_id
for d in [upload_dir, results_dir]:
if d.exists():
shutil.rmtree(d)
# save the uploaded files
@app.route('/uploads', methods=['POST'])
def upload_files():
session_id = session['id']
files = request.files.getlist('files')
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
# clear out any existing files for the session
if upload_dir.exists():
shutil.rmtree(upload_dir)
upload_dir.mkdir(parents=True, exist_ok=True)
# generate new unique filenames via uuid, save the mapping dict of old:new to session
filename_map = {}
for f in files:
orig_name = secure_filename(f.filename)
ext = Path(orig_name).suffix
unique_name = f"{uuid.uuid4().hex}{ext}"
file_path = upload_dir / unique_name
f.save(str(file_path))
filename_map[orig_name] = unique_name
session['filename_map'] = filename_map
return jsonify({'filename_map': filename_map, 'status': 'uploaded'})
# helper function to simplify args for pool.imap
@ThreadingLocked()
def process_single_image(args):
orig_name, img_path, pickle_path, model = args
img_results = detect_in_image(model, str(img_path))
with open(pickle_path, 'wb') as pf:
pickle.dump(img_results, pf)
return (orig_name, img_results)
@app.route('/process', methods=['POST'])
def process_images():
model = get_model()
session_id = session['id']
filename_map = session.get('filename_map', {})
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
state = {}
state['status'] = 'starting'
state['progress'] = 0
state['filename_map'] = filename_map
state['jobId'] = session['id']
session['job_state'] = state
# create a results_dir, clean out old one if needed
results_dir = Path(app.config['RESULTS_FOLDER']) / session_id
if results_dir.exists():
shutil.rmtree(results_dir)
results_dir.mkdir(parents=True)
# set up args list for imap
n_img = len(filename_map)
arg_list = [(orig_name,
upload_dir / filename_map[orig_name],
results_dir / f"{Path(orig_name).stem}_results.pkl",
model) for orig_name in filename_map.keys()]
try:
all_detections = {}
state['status'] = 'processing'
session['job_state'] = state
if MODEL_DEVICE == 'cuda':
pool = None
for idx, args in enumerate(arg_list):
orig_name, img_results = process_single_image(args)
all_detections[orig_name] = img_results
state['progress'] = int((idx + 1) / n_img * 100)
session['job_state'] = state
else:
with ThreadPool() as pool:
for idx, result in enumerate(pool.imap(process_single_image, arg_list)):
state['progress'] = int((idx + 1) / n_img * 100)
orig_name, img_results = result
all_detections[orig_name] = img_results
session['job_state'] = state
# Save all detections to a pickled file
detections_path = results_dir / 'all_detections.pkl'
with open(detections_path, 'wb') as f:
pickle.dump(all_detections, f)
state['status'] = 'completed'
state['progress'] = 100
session['job_state'] = state
except Exception as e:
print(f"Error in /process: {e}")
print(traceback.format_exc())
state['status'] = 'error'
state['error'] = str(e)
state['progress'] = 100
session['job_state'] = state
resp = {
'status': state.get('status', 'unknown'),
'progress': state.get('progress', 0),
'jobId': state.get('jobId'),
'error': state.get('error'),
}
return jsonify(resp)
# Support /progress/<jobId> for frontend polling
@app.route('/progress/<jobId>')
def get_progress_with_id(jobId):
try:
job_state = session.get('job_state')
if not job_state:
print(f"/progress/{jobId}: No job_state found in session.")
return jsonify({"status": "error", "error": "No job state"}), 404
resp = {
'status': job_state.get('status', 'unknown'),
'progress': job_state.get('progress', 0),
'jobId': session.get('id'),
'error': job_state.get('error'),
}
# If completed, load and return all_detections.pkl as JSON
if job_state.get('status') == 'completed':
session_id = session['id']
detections_path = Path(app.config['RESULTS_FOLDER']) / session_id / 'all_detections.pkl'
if detections_path.exists():
with open(detections_path, 'rb') as f:
all_detections = pickle.load(f)
resp['results'] = all_detections
return jsonify(resp)
except Exception as e:
print(f"Error in /progress/{jobId}: {e}")
print(traceback.format_exc())
return jsonify({"status": "error", "error": str(e)}), 500
# /annotate route for dynamic annotation
@app.route('/annotate', methods=['POST'])
def annotate_image():
try:
data = request.get_json()
filename = data.get('filename')
confidence = float(data.get('confidence', 0.5))
session_id = session['id']
filename_map = session.get('filename_map', {})
unique_name = filename_map.get(filename)
if not unique_name:
return jsonify({'error': 'File not found'}), 404
# Load detections from pickle
result_path = Path(app.config['RESULTS_FOLDER']) / session_id / f"{Path(filename).stem}_results.pkl"
if not result_path.exists():
return jsonify({'error': 'Results not found'}), 404
with open(result_path, 'rb') as pf:
detections = pickle.load(pf)
# Load image
img_path = Path(app.config['UPLOAD_FOLDER']) / session_id / unique_name
img = cv2.imread(str(img_path), cv2.IMREAD_UNCHANGED)
# Filter detections
filtered = [d for d in detections if d.get('score', 0) >= confidence]
# Draw boxes
for det in filtered:
x1, y1, x2, y2 = map(int, det['bbox'])
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
# Save annotated image to temp
annotated_path = Path(app.config['RESULTS_FOLDER']) / 'annotated'
annotated_path.mkdir(parents=True, exist_ok=True)
out_name = f"{Path(filename).stem}_annotated.png"
out_file = annotated_path / out_name
cv2.imwrite(str(out_file), img)
# Serve image
with open(out_file, 'rb') as f:
return send_file(
io.BytesIO(f.read()),
mimetype='image/png',
as_attachment=False,
download_name=out_name
)
except Exception as e:
print(f"Error in /annotate: {e}")
return jsonify({'error': str(e)}), 500
@app.route('/results/<path:filename>')
def download_file(filename):
try:
session_id = session['id']
if '..' in filename or filename.startswith('/'):
return jsonify({"error": "Invalid filename"}), 400
safe_filename = secure_filename(filename)
file_dir = Path(app.config['RESULTS_FOLDER']) / session_id
file_path = (file_dir / safe_filename).resolve()
if not str(file_path).startswith(str(file_dir.resolve())):
print(f"Attempted path traversal: {session_id}/{filename}")
return jsonify({"error": "Invalid file path"}), 400
if not file_path.is_file():
if not file_dir.exists():
return jsonify({"error": f"Session directory {session_id} not found"}), 404
files_in_dir = list(file_dir.iterdir())
return jsonify({"error": f"File '{filename}' not found in session '{session_id}'. Available: {[f.name for f in files_in_dir]}"}), 404
if filename.lower().endswith(('.tif', '.tiff')):
try:
with Image.open(file_path) as img:
img = img.convert('RGBA') if img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info) else img.convert('RGB')
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
return send_file(
img_byte_arr,
mimetype='image/png',
as_attachment=False,
download_name=f"{Path(filename).stem}.png"
)
except Exception as e:
print(f"Error converting TIF to PNG: {e}")
return jsonify({"error": "Could not convert TIF image"}), 500
mime_type = None
if safe_filename.lower().endswith(('.png', '.jpg', '.jpeg')):
try:
with Image.open(file_path) as img:
mime_type = 'image/jpeg' if img.format == 'JPEG' else 'image/png'
except Exception as img_err:
print(f"Could not determine MIME type for {safe_filename}: {img_err}")
if safe_filename.lower() == "results.csv":
mime_type = 'text/csv'
return send_file(
str(file_path),
mimetype=mime_type,
as_attachment=True,
download_name=safe_filename
)
return send_file(str(file_path), mimetype=mime_type)
except Exception as e:
error_message = f"File serving error: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_images')
def export_images():
try:
session_id = session['id']
job_dir = Path(app.config['RESULTS_FOLDER']) / session_id
if not job_dir.exists():
return jsonify({"error": f"Session directory {session_id} not found"}), 404
annotated_files = list(job_dir.glob('*_annotated.*'))
if not annotated_files:
return jsonify({"error": "No annotated images found"}), 404
memory_file = io.BytesIO()
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
for file_path in annotated_files:
zf.write(file_path, file_path.name)
memory_file.seek(0)
timestamp = datetime.now().strftime('%Y%m%d-%H%M%S')
return send_file(
memory_file,
mimetype='application/zip',
as_attachment=True,
download_name=f'nemaquant_annotated_{timestamp}.zip'
)
except Exception as e:
error_message = f"Error exporting images: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_csv', methods=['POST'])
def export_csv():
try:
data = request.json
session_id = session['id']
threshold = float(data.get('confidence', 0.5))
job_state = session.get('job_state')
if not job_state:
return jsonify({'error': 'Job not found'}), 404
rows = []
for orig_name, detections in job_state['detections'].items():
count = sum(1 for d in detections if d['score'] >= threshold)
rows.append({'Filename': orig_name, 'EggsDetected': count})
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
output = io.StringIO()
writer = csv.DictWriter(output, fieldnames=['Filename', 'EggsDetected'])
writer.writeheader()
writer.writerows(rows)
output.seek(0)
return Response(
output.getvalue(),
mimetype='text/csv',
headers={
'Content-Disposition': f'attachment; filename=nemaquant_results_{timestamp}.csv'
}
)
except Exception as e:
error_message = f"Error exporting CSV: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
@app.route('/export_images', methods=['POST'])
def export_images_post():
try:
data = request.json
session_id = session['id']
threshold = float(data.get('confidence', 0.5))
job_state = session.get('job_state')
if not job_state:
return jsonify({'error': 'Job not found'}), 404
memory_file = io.BytesIO()
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
for orig_name, detections in job_state['detections'].items():
unique_name = job_state['filename_map'][orig_name]
img_path = Path(app.config['UPLOAD_FOLDER']) / session_id / unique_name
img = cv2.imread(str(img_path), cv2.IMREAD_UNCHANGED)
filtered = [d for d in detections if d['score'] >= threshold]
for det in filtered:
x1, y1, x2, y2 = map(int, det['bbox'])
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
out_name = f"{Path(orig_name).stem}.png"
_, img_bytes = cv2.imencode('.png', img)
zf.writestr(out_name, img_bytes.tobytes())
memory_file.seek(0)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
return send_file(
memory_file,
mimetype='application/zip',
as_attachment=True,
download_name=f'nemaquant_annotated_{timestamp}.zip'
)
except Exception as e:
error_message = f"Error exporting images: {str(e)}"
print(error_message)
return jsonify({"error": "Server error", "log": error_message}), 500
def print_startup_info():
print("----- NemaQuant Flask App Starting -----")
print(f"Working directory: {os.getcwd()}")
python_version_single_line = sys.version.replace('\n', ' ')
print(f"Python version: {python_version_single_line}")
print(f"Weights file: {WEIGHTS_FILE}")
print(f"Weights file exists: {WEIGHTS_FILE.exists()}")
if WEIGHTS_FILE.exists():
try:
print(f"Weights file size: {WEIGHTS_FILE.stat().st_size} bytes")
except Exception as e:
print(f"Could not get weights file size: {e}")
is_container = Path('/.dockerenv').exists() or 'DOCKER_HOST' in os.environ
print(f"Running in container: {is_container}")
if is_container:
try:
user_info = f"{os.getuid()}:{os.getgid()}"
print(f"User running process: {user_info}")
except AttributeError:
print("User running process: UID/GID not available on this OS")
for path_str in ["/app/uploads", "/app/results"]:
path_obj = Path(path_str)
if path_obj.exists():
stat_info = path_obj.stat()
permissions = oct(stat_info.st_mode)[-3:]
owner = f"{stat_info.st_uid}:{stat_info.st_gid}"
print(f"Permissions for {path_str}: {permissions}")
print(f"Owner for {path_str}: {owner}")
else:
print(f"Directory {path_str} does not exist.")
nemaquant_script = APP_ROOT / 'nemaquant.py'
print(f"NemaQuant script exists: {nemaquant_script.exists()}")
if nemaquant_script.exists():
try:
permissions = oct(nemaquant_script.stat().st_mode)[-3:]
print(f"NemaQuant script permissions: {permissions}")
except Exception as e:
print(f"Could not get NemaQuant script details: {e}")
@app.before_request
def ensure_session_id():
if 'id' not in session:
session['id'] = str(uuid.uuid4())
# Explicit endpoint for safe session cleanup
@app.route('/cleanup', methods=['POST'])
def cleanup_endpoint():
if 'id' in session:
cleanup_session(session['id'])
session.clear()
return jsonify({'status': 'cleaned up'})
return jsonify({'error': 'No session to clean up'}), 400
if __name__ == '__main__':
print_startup_info()
app.run(host='0.0.0.0', port=7860, debug=True) |