HVAC-03 / utils /psychrometrics.py
mabuseif's picture
Update utils/psychrometrics.py
10c760b verified
raw
history blame
35.8 kB
"""
Psychrometric module for HVAC Load Calculator.
This module implements psychrometric calculations for air properties,
including functions for mixing air streams and handling different altitudes.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
Author: Dr Majed Abuseif
Date: May 2025 (Enhanced based on plan, preserving original features)
Version: 1.3.0
"""
from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging
# Set up logging
logger = logging.getLogger(__name__)
# Constants (Preserved from original)
ATMOSPHERIC_PRESSURE = 101325 # Standard atmospheric pressure at sea level in Pa
WATER_MOLECULAR_WEIGHT = 18.01534 # kg/kmol
DRY_AIR_MOLECULAR_WEIGHT = 28.9645 # kg/kmol
UNIVERSAL_GAS_CONSTANT = 8314.462618 # J/(kmol·K)
GAS_CONSTANT_DRY_AIR = UNIVERSAL_GAS_CONSTANT / DRY_AIR_MOLECULAR_WEIGHT # J/(kg·K) = 287.058
GAS_CONSTANT_WATER_VAPOR = UNIVERSAL_GAS_CONSTANT / WATER_MOLECULAR_WEIGHT # J/(kg·K) = 461.52
# Constants for altitude calculation (Standard Atmosphere Model)
SEA_LEVEL_TEMP_K = 288.15 # K (15 °C)
LAPSE_RATE = 0.0065 # K/m
GRAVITY = 9.80665 # m/s²
class Psychrometrics:
"""Class for psychrometric calculations."""
# --- Input Validation (Preserved and slightly enhanced) --- #
@staticmethod
def validate_inputs(t_db: Optional[float] = None, rh: Optional[float] = None,
w: Optional[float] = None, h: Optional[float] = None,
p_atm: Optional[float] = None) -> None:
"""
Validate input parameters for psychrometric calculations.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity in % (0-100)
w: Humidity ratio (kg/kg)
h: Enthalpy (J/kg)
p_atm: Atmospheric pressure in Pa
Raises:
ValueError: If inputs are invalid
"""
if t_db is not None and not -100 <= t_db <= 200: # Wider range for intermediate calcs
raise ValueError(f"Temperature {t_db}°C must be within a reasonable range (-100°C to 200°C)")
if rh is not None and not 0 <= rh <= 100:
# Allow slightly > 100 due to calculation tolerances, clamp later
if rh < 0 or rh > 105:
raise ValueError(f"Relative humidity {rh}% must be between 0 and 100%")
if w is not None and w < 0:
raise ValueError(f"Humidity ratio {w} cannot be negative")
# Enthalpy can be negative relative to datum
# if h is not None and h < 0:
# raise ValueError(f"Enthalpy {h} cannot be negative")
if p_atm is not None and not 10000 <= p_atm <= 120000: # Typical atmospheric range
raise ValueError(f"Atmospheric pressure {p_atm} Pa must be within a reasonable range (10kPa to 120kPa)")
# --- Altitude/Pressure Calculation (Added based on plan) --- #
@staticmethod
def pressure_at_altitude(altitude: float, sea_level_pressure: float = ATMOSPHERIC_PRESSURE,
sea_level_temp_c: float = 15.0) -> float:
"""
Calculate atmospheric pressure at a given altitude using the standard atmosphere model.
Reference: https://en.wikipedia.org/wiki/Barometric_formula
Args:
altitude: Altitude above sea level in meters.
sea_level_pressure: Pressure at sea level in Pa (default: 101325 Pa).
sea_level_temp_c: Temperature at sea level in °C (default: 15 °C).
Returns:
Atmospheric pressure at the given altitude in Pa.
"""
if altitude < -500 or altitude > 80000: # Valid range for model
logger.warning(f"Altitude {altitude}m is outside the typical range for the standard atmosphere model.")
sea_level_temp_k = sea_level_temp_c + 273.15
r_da = GAS_CONSTANT_DRY_AIR
# Formula assumes constant lapse rate up to 11km
if altitude <= 11000:
temp_k = sea_level_temp_k - LAPSE_RATE * altitude
pressure = sea_level_pressure * (temp_k / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
else:
# Simplified: Use constant temperature above 11km (tropopause)
# A more complex model is needed for higher altitudes
logger.warning("Altitude > 11km. Using simplified pressure calculation.")
temp_11km = sea_level_temp_k - LAPSE_RATE * 11000
pressure_11km = sea_level_pressure * (temp_11km / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
pressure = pressure_11km * math.exp(-GRAVITY * (altitude - 11000) / (r_da * temp_11km))
return pressure
# --- Core Psychrometric Functions (Preserved from original) --- #
@staticmethod
def saturation_pressure(t_db: float) -> float:
"""
Calculate saturation pressure of water vapor.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5 and 6.
Args:
t_db: Dry-bulb temperature in °C
Returns:
Saturation pressure in Pa
"""
# Input validation is implicitly handled by usage, but can be added
# Psychrometrics.validate_inputs(t_db=t_db)
t_k = t_db + 273.15
if t_k <= 0:
# Avoid issues with log(T) or 1/T at or below absolute zero
return 0.0
if t_db >= 0:
# Eq 6 (ASHRAE 2017) - Renamed from Eq 5 in older versions
C1 = -5.8002206E+03
C2 = 1.3914993E+00
C3 = -4.8640239E-02
C4 = 4.1764768E-05
C5 = -1.4452093E-08
C6 = 6.5459673E+00
ln_p_ws = C1/t_k + C2 + C3*t_k + C4*t_k**2 + C5*t_k**3 + C6*math.log(t_k)
else:
# Eq 5 (ASHRAE 2017) - Renamed from Eq 6 in older versions
C7 = -5.6745359E+03
C8 = 6.3925247E+00
C9 = -9.6778430E-03
C10 = 6.2215701E-07
C11 = 2.0747825E-09
C12 = -9.4840240E-13
C13 = 4.1635019E+00
ln_p_ws = C7/t_k + C8 + C9*t_k + C10*t_k**2 + C11*t_k**3 + C12*t_k**4 + C13*math.log(t_k)
p_ws = math.exp(ln_p_ws)
return p_ws
@staticmethod
def humidity_ratio(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate humidity ratio (mass of water vapor per unit mass of dry air).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 20, 12.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Humidity ratio in kg water vapor / kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
rh_decimal = max(0.0, min(1.0, rh / 100.0)) # Clamp RH
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = rh_decimal * p_ws # Eq 12
# Check if partial pressure exceeds atmospheric pressure (physically impossible)
if p_w >= p_atm:
# This usually indicates very high temp or incorrect pressure
logger.warning(f"Calculated partial pressure {p_w:.1f} Pa >= atmospheric pressure {p_atm:.1f} Pa at T={t_db}°C, RH={rh}%. Clamping humidity ratio.")
# Return saturation humidity ratio at p_atm (boiling point)
p_w_sat_at_p_atm = p_atm # Water boils when p_ws = p_atm
w = 0.621945 * p_w_sat_at_p_atm / (p_atm - p_w_sat_at_p_atm + 1e-9) # Add small epsilon to avoid division by zero
return w
# raise ValueError(f"Partial pressure {p_w:.1f} Pa cannot exceed atmospheric pressure {p_atm:.1f} Pa")
# Eq 20
w = 0.621945 * p_w / (p_atm - p_w)
return max(0.0, w) # Ensure non-negative
@staticmethod
def relative_humidity(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate relative humidity from humidity ratio.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 22, 12.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Relative humidity (0-100)
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w) # Ensure non-negative
p_ws = Psychrometrics.saturation_pressure(t_db)
# Eq 22 (Rearranged from Eq 20)
p_w = p_atm * w / (0.621945 + w)
if p_ws <= 0:
# Avoid division by zero at very low temperatures
return 0.0
# Eq 12 (Definition of RH)
rh = 100.0 * p_w / p_ws
return max(0.0, min(100.0, rh)) # Clamp RH between 0 and 100
@staticmethod
def wet_bulb_temperature(t_db: float, rh: Optional[float] = None, w: Optional[float] = None,
p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate wet-bulb temperature using an iterative method or direct formula if applicable.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 33, 35.
Stull, R. (2011). "Wet-Bulb Temperature from Relative Humidity and Air Temperature". Journal of Applied Meteorology and Climatology.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100) (either rh or w must be provided)
w: Humidity ratio (kg/kg) (either rh or w must be provided)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Wet-bulb temperature in °C
"""
if rh is None and w is None:
raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")
if rh is not None:
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
w_actual = Psychrometrics.humidity_ratio(t_db, rh, p_atm)
elif w is not None:
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w_actual = w
else:
raise ValueError("Calculation error in wet_bulb_temperature input handling.") # Should not happen
# --- Using Stull's empirical formula (approximation) --- #
# Provides a good initial guess or can be used directly for moderate accuracy
try:
rh_actual = Psychrometrics.relative_humidity(t_db, w_actual, p_atm)
rh_decimal = rh_actual / 100.0
t_wb_stull = (t_db * math.atan(0.151977 * (rh_actual + 8.313659)**0.5) +
math.atan(t_db + rh_actual) -
math.atan(rh_actual - 1.676331) +
0.00391838 * (rh_actual**1.5) * math.atan(0.023101 * rh_actual) -
4.686035)
# Check if Stull's result is reasonable (e.g., t_wb <= t_db)
if t_wb_stull <= t_db and abs(t_wb_stull - t_db) < 50: # Basic sanity check
# Use Stull's value as a very good starting point for iteration
t_wb_guess = t_wb_stull
else:
t_wb_guess = t_db * 0.8 # Fallback guess
except Exception:
t_wb_guess = t_db * 0.8 # Fallback guess if Stull's formula fails
# --- Iterative solution based on ASHRAE Eq 33/35 --- #
t_wb = t_wb_guess
max_iterations = 100
tolerance_w = 1e-7 # Tolerance on humidity ratio
for i in range(max_iterations):
# Saturation humidity ratio at current guess of t_wb
p_ws_wb = Psychrometrics.saturation_pressure(t_wb)
w_s_wb = 0.621945 * p_ws_wb / (p_atm - p_ws_wb)
w_s_wb = max(0.0, w_s_wb)
# Humidity ratio calculated from energy balance (Eq 33/35 rearranged)
# Using simplified specific heats for this iterative approach
c_pa = 1006 # J/(kg·K)
c_pw = 1860 # J/(kg·K)
h_fg_wb = Psychrometrics.latent_heat_of_vaporization(t_wb) # J/kg
# Eq 35 rearranged to find W based on Tdb, Twb, Ws_wb
numerator = (c_pa + w_s_wb * c_pw) * t_wb - c_pa * t_db
denominator = (c_pa + w_s_wb * c_pw) * t_wb - (c_pw * t_db + h_fg_wb)
# Avoid division by zero if denominator is close to zero
if abs(denominator) < 1e-6:
# This might happen near saturation, check if w_actual is close to w_s_wb
if abs(w_actual - w_s_wb) < tolerance_w * 10:
break # Converged near saturation
else:
# Adjust guess differently if denominator is zero
t_wb -= 0.05 * (1 if w_s_wb > w_actual else -1)
continue
w_calc_from_wb = w_s_wb + numerator / denominator
# Check convergence
if abs(w_actual - w_calc_from_wb) < tolerance_w:
break
# Adjust wet-bulb temperature guess (simple step adjustment)
# A more sophisticated root-finding method (like Newton-Raphson) could be used here
step = 0.1 # Initial step size
if i > 10: step = 0.01 # Smaller steps later
if i > 50: step = 0.001
if w_calc_from_wb > w_actual:
t_wb -= step # Calculated W is too high, need lower Twb
else:
t_wb += step # Calculated W is too low, need higher Twb
# Ensure t_wb doesn't exceed t_db
t_wb = min(t_wb, t_db)
else:
# If loop finishes without break, convergence failed
logger.warning(f"Wet bulb calculation did not converge after {max_iterations} iterations for Tdb={t_db}, W={w_actual:.6f}. Result: {t_wb:.3f}")
# Ensure Twb <= Tdb
return min(t_wb, t_db)
@staticmethod
def dew_point_temperature(t_db: Optional[float] = None, rh: Optional[float] = None,
w: Optional[float] = None, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate dew point temperature.
Uses the relationship Tdp = T(Pw) where Pw is partial pressure.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5, 6, 37.
Args:
t_db: Dry-bulb temperature in °C (required if rh is given)
rh: Relative humidity (0-100) (either rh or w must be provided)
w: Humidity ratio (kg/kg) (either rh or w must be provided)
p_atm: Atmospheric pressure in Pa (required if w is given)
Returns:
Dew point temperature in °C
"""
if rh is None and w is None:
raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")
if rh is not None:
if t_db is None:
raise ValueError("Dry-bulb temperature (t_db) must be provided if relative humidity (rh) is given.")
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
rh_decimal = max(0.0, min(1.0, rh / 100.0))
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = rh_decimal * p_ws
elif w is not None:
Psychrometrics.validate_inputs(w=w, p_atm=p_atm)
w = max(0.0, w)
# Eq 22 (Rearranged from Eq 20)
p_w = p_atm * w / (0.621945 + w)
else:
raise ValueError("Calculation error in dew_point_temperature input handling.") # Should not happen
if p_w <= 0:
# Handle case of zero humidity
return -100.0 # Or some other indicator of very dry air
# Find temperature at which saturation pressure equals partial pressure p_w
# This requires inverting the saturation pressure formula (Eq 5/6)
# Using iterative approach or approximation formula (like Magnus formula or ASHRAE Eq 37/38)
# Using ASHRAE 2017 Eq 37 & 38 (approximation)
alpha = math.log(p_w / 610.71) # Note: ASHRAE uses Pw in Pa, but older formulas used kPa. Using Pa here. Ref: Eq 3/4
# Eq 38 for Tdp >= 0
t_dp_pos = (18.678 - alpha / 234.5) * alpha / (257.14 + alpha / 234.5 * alpha)
# Eq 37 for Tdp < 0
t_dp_neg = 6.09 + 12.608 * alpha + 0.4959 * alpha**2 # This seems less accurate based on testing
# Alternative Magnus formula approximation (often used):
# Constants for Magnus formula (approximation)
# A = 17.625
# B = 243.04
# gamma = math.log(rh_decimal) + (A * t_db) / (B + t_db)
# t_dp_magnus = (B * gamma) / (A - gamma)
# Iterative approach for higher accuracy (finding T such that Pws(T) = Pw)
# Start guess near Tdb or using approximation
t_dp_guess = t_dp_pos # Use ASHRAE approximation as starting point
max_iterations = 20
tolerance_p = 0.1 # Pa tolerance
for i in range(max_iterations):
p_ws_at_guess = Psychrometrics.saturation_pressure(t_dp_guess)
error = p_w - p_ws_at_guess
if abs(error) < tolerance_p:
break
# Estimate derivative d(Pws)/dT (Clausius-Clapeyron approximation)
# L = Psychrometrics.latent_heat_of_vaporization(t_dp_guess)
# Rv = GAS_CONSTANT_WATER_VAPOR
# T_k = t_dp_guess + 273.15
# dP_dT = (p_ws_at_guess * L) / (Rv * T_k**2)
# A simpler approximation for derivative:
p_ws_plus = Psychrometrics.saturation_pressure(t_dp_guess + 0.01)
dP_dT = (p_ws_plus - p_ws_at_guess) / 0.01
if abs(dP_dT) < 1e-3: # Avoid division by small number if derivative is near zero
break
# Newton-Raphson step
t_dp_guess += error / dP_dT
else:
logger.debug(f"Dew point iteration did not fully converge for Pw={p_w:.2f} Pa. Result: {t_dp_guess:.3f}")
return t_dp_guess
@staticmethod
def latent_heat_of_vaporization(t_db: float) -> float:
"""
Calculate latent heat of vaporization of water at a given temperature.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 2.
Args:
t_db: Dry-bulb temperature in °C
Returns:
Latent heat of vaporization (h_fg) in J/kg
"""
# Eq 2 (Approximation)
h_fg = (2501 - 2.361 * t_db) * 1000 # Convert kJ/kg to J/kg
return h_fg
@staticmethod
def enthalpy(t_db: float, w: float) -> float:
"""
Calculate specific enthalpy of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30.
Datum: 0 J/kg for dry air at 0°C, 0 J/kg for saturated liquid water at 0°C.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
Returns:
Specific enthalpy in J/kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w)
w = max(0.0, w)
# Using more accurate specific heats if needed, but ASHRAE Eq 30 uses constants:
c_pa = 1006 # Specific heat of dry air in J/(kg·K)
h_g0 = 2501000 # Enthalpy of water vapor at 0°C in J/kg
c_pw = 1860 # Specific heat of water vapor in J/(kg·K)
# Eq 30
h = c_pa * t_db + w * (h_g0 + c_pw * t_db)
return h
@staticmethod
def specific_volume(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate specific volume of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 26.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Specific volume in m³/kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w)
t_k = t_db + 273.15
r_da = GAS_CONSTANT_DRY_AIR
# Eq 26 (Ideal Gas Law for moist air)
# Factor 1.607858 is Ratio of MW_air / MW_water approx (28.9645 / 18.01534)
v = (r_da * t_k / p_atm) * (1 + 1.607858 * w)
return v
@staticmethod
def density(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate density of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, derived from Equation 26.
Density = Mass / Volume = (Mass Dry Air + Mass Water Vapor) / Volume
= (1 + w) / specific_volume
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Density in kg moist air / m³
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w)
v = Psychrometrics.specific_volume(t_db, w, p_atm) # m³/kg dry air
if v <= 0:
raise ValueError("Calculated specific volume is non-positive, cannot calculate density.")
# Density = mass_total / volume = (mass_dry_air + mass_water) / volume
# Since v = volume / mass_dry_air, then density = (1 + w) / v
rho = (1 + w) / v
return rho
# --- Comprehensive Property Calculation (Preserved) --- #
@staticmethod
def moist_air_properties(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE,
altitude: Optional[float] = None) -> Dict[str, float]:
"""
Calculate all psychrometric properties of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).
If altitude is provided, p_atm is calculated and this value is ignored.
altitude: Altitude in meters (optional). If provided, calculates pressure at altitude.
Returns:
Dictionary with all psychrometric properties.
"""
if altitude is not None:
p_atm_calc = Psychrometrics.pressure_at_altitude(altitude)
logger.debug(f"Calculated pressure at altitude {altitude}m: {p_atm_calc:.0f} Pa")
p_atm_used = p_atm_calc
else:
p_atm_used = p_atm
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm_used)
rh_clamped = max(0.0, min(100.0, rh))
w = Psychrometrics.humidity_ratio(t_db, rh_clamped, p_atm_used)
t_wb = Psychrometrics.wet_bulb_temperature(t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
t_dp = Psychrometrics.dew_point_temperature(t_db=t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
h = Psychrometrics.enthalpy(t_db, w)
v = Psychrometrics.specific_volume(t_db, w, p_atm_used)
rho = Psychrometrics.density(t_db, w, p_atm_used)
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = (rh_clamped / 100.0) * p_ws
return {
"dry_bulb_temperature_c": t_db,
"wet_bulb_temperature_c": t_wb,
"dew_point_temperature_c": t_dp,
"relative_humidity_percent": rh_clamped,
"humidity_ratio_kg_kg": w,
"enthalpy_j_kg": h,
"specific_volume_m3_kg": v,
"density_kg_m3": rho,
"saturation_pressure_pa": p_ws,
"partial_pressure_pa": p_w,
"atmospheric_pressure_pa": p_atm_used
}
# --- Inverse Functions (Preserved) --- #
@staticmethod
def find_humidity_ratio_for_enthalpy(t_db: float, h: float) -> float:
"""
Find humidity ratio for a given dry-bulb temperature and enthalpy.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
Args:
t_db: Dry-bulb temperature in °C
h: Specific enthalpy in J/kg dry air
Returns:
Humidity ratio in kg water vapor / kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, h=h)
c_pa = 1006
h_g0 = 2501000
c_pw = 1860
denominator = (h_g0 + c_pw * t_db)
if abs(denominator) < 1e-6:
# Avoid division by zero, happens at specific low temps where denominator is zero
logger.warning(f"Denominator near zero in find_humidity_ratio_for_enthalpy at Tdb={t_db}. Enthalpy {h} may be inconsistent.")
return 0.0 # Or raise error
w = (h - c_pa * t_db) / denominator
return max(0.0, w) # Humidity ratio cannot be negative
@staticmethod
def find_temperature_for_enthalpy(w: float, h: float) -> float:
"""
Find dry-bulb temperature for a given humidity ratio and enthalpy.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
Args:
w: Humidity ratio in kg water vapor / kg dry air
h: Specific enthalpy in J/kg dry air
Returns:
Dry-bulb temperature in °C
"""
Psychrometrics.validate_inputs(w=w, h=h)
w = max(0.0, w)
c_pa = 1006
h_g0 = 2501000
c_pw = 1860
denominator = (c_pa + w * c_pw)
if abs(denominator) < 1e-6:
raise ValueError(f"Cannot calculate temperature: denominator (Cp_a + w*Cp_w) is near zero for w={w}")
t_db = (h - w * h_g0) / denominator
# Validate the result is within reasonable bounds
Psychrometrics.validate_inputs(t_db=t_db)
return t_db
# --- Heat Ratio and Flow Rate (Preserved) --- #
@staticmethod
def sensible_heat_ratio(q_sensible: float, q_total: float) -> float:
"""
Calculate sensible heat ratio (SHR).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.5.
Args:
q_sensible: Sensible heat load in W (can be negative for cooling)
q_total: Total heat load in W (sensible + latent) (can be negative for cooling)
Returns:
Sensible heat ratio (typically 0 to 1 for cooling, can be >1 or <0 in some cases)
"""
if abs(q_total) < 1e-9: # Avoid division by zero
# If total load is zero, SHR is undefined or can be considered 1 if only sensible exists
return 1.0 if abs(q_sensible) < 1e-9 else (1.0 if q_sensible > 0 else -1.0) # Or np.nan
shr = q_sensible / q_total
return shr
@staticmethod
def air_flow_rate_for_load(q_sensible: float, delta_t: float,
rho: Optional[float] = None, cp: float = 1006,
altitude: Optional[float] = None) -> float:
"""
Calculate volumetric air flow rate required to meet a sensible load.
Formula: q_sensible = m_dot * cp * delta_t = (rho * V_dot) * cp * delta_t
V_dot = q_sensible / (rho * cp * delta_t)
Args:
q_sensible: Sensible heat load in W.
delta_t: Temperature difference between supply and return air in °C (or K).
rho: Density of air in kg/m³ (optional, will use standard density if None).
cp: Specific heat of air in J/(kg·K) (default: 1006).
altitude: Altitude in meters (optional, used to estimate density if rho is None).
Returns:
Volumetric air flow rate (V_dot) in m³/s.
"""
if abs(delta_t) < 1e-6:
raise ValueError("Delta T cannot be zero for air flow rate calculation.")
if rho is None:
# Estimate density based on typical conditions or altitude
if altitude is not None:
p_atm_alt = Psychrometrics.pressure_at_altitude(altitude)
# Assume typical indoor conditions for density calculation
rho = Psychrometrics.density(t_db=22, w=0.008, p_atm=p_atm_alt)
else:
# Use standard sea level density as approximation
rho = Psychrometrics.density(t_db=20, w=0.0075) # Approx 1.2 kg/m³
logger.debug(f"Using estimated air density: {rho:.3f} kg/m³")
if rho <= 0:
raise ValueError("Air density must be positive.")
v_dot = q_sensible / (rho * cp * delta_t)
return v_dot
# --- Air Mixing Function (Added based on plan) --- #
@staticmethod
def mix_air_streams(stream1: Dict[str, float], stream2: Dict[str, float],
p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
"""
Calculate the properties of a mixture of two moist air streams.
Assumes adiabatic mixing at constant pressure.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.4.
Args:
stream1: Dict for stream 1 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
stream2: Dict for stream 2 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).
Returns:
Dictionary with properties of the mixed stream: 't_db', 'w', 'rh', 'h', 'flow_rate'.
Raises:
ValueError: If input dictionaries are missing required keys or have invalid values.
"""
# Validate inputs and get full properties for each stream
props1 = {}
props2 = {}
try:
t_db1 = stream1['t_db']
flow1 = stream1['flow_rate']
if 'rh' in stream1:
props1 = Psychrometrics.moist_air_properties(t_db1, stream1['rh'], p_atm)
elif 'w' in stream1:
w1 = stream1['w']
Psychrometrics.validate_inputs(t_db=t_db1, w=w1, p_atm=p_atm)
props1 = Psychrometrics.moist_air_properties(t_db1, Psychrometrics.relative_humidity(t_db1, w1, p_atm), p_atm)
else:
raise ValueError("Stream 1 must contain 'rh' or 'w'.")
if flow1 < 0: raise ValueError("Stream 1 flow rate cannot be negative.")
m_dot1 = flow1 * props1['density_kg_m3'] # Mass flow rate kg/s
t_db2 = stream2['t_db']
flow2 = stream2['flow_rate']
if 'rh' in stream2:
props2 = Psychrometrics.moist_air_properties(t_db2, stream2['rh'], p_atm)
elif 'w' in stream2:
w2 = stream2['w']
Psychrometrics.validate_inputs(t_db=t_db2, w=w2, p_atm=p_atm)
props2 = Psychrometrics.moist_air_properties(t_db2, Psychrometrics.relative_humidity(t_db2, w2, p_atm), p_atm)
else:
raise ValueError("Stream 2 must contain 'rh' or 'w'.")
if flow2 < 0: raise ValueError("Stream 2 flow rate cannot be negative.")
m_dot2 = flow2 * props2['density_kg_m3'] # Mass flow rate kg/s
except KeyError as e:
raise ValueError(f"Missing required key in input stream dictionary: {e}")
except ValueError as e:
raise ValueError(f"Invalid input value: {e}")
# Total mass flow rate
m_dot_mix = m_dot1 + m_dot2
if m_dot_mix <= 1e-9: # Avoid division by zero if total flow is zero
logger.warning("Total mass flow rate for mixing is zero. Returning properties of stream 1 (or empty dict if flow1 is also zero).")
if m_dot1 > 1e-9:
return {
't_db': props1['dry_bulb_temperature_c'],
'w': props1['humidity_ratio_kg_kg'],
'rh': props1['relative_humidity_percent'],
'h': props1['enthalpy_j_kg'],
'flow_rate': flow1
}
else: # Both flows are zero
return {'t_db': 0, 'w': 0, 'rh': 0, 'h': 0, 'flow_rate': 0}
# Mass balance for humidity ratio
w_mix = (m_dot1 * props1['humidity_ratio_kg_kg'] + m_dot2 * props2['humidity_ratio_kg_kg']) / m_dot_mix
# Energy balance for enthalpy
h_mix = (m_dot1 * props1['enthalpy_j_kg'] + m_dot2 * props2['enthalpy_j_kg']) / m_dot_mix
# Find mixed temperature from mixed enthalpy and humidity ratio
t_db_mix = Psychrometrics.find_temperature_for_enthalpy(w_mix, h_mix)
# Find mixed relative humidity
rh_mix = Psychrometrics.relative_humidity(t_db_mix, w_mix, p_atm)
# Calculate mixed flow rate (volume)
# Need density at mixed conditions
rho_mix = Psychrometrics.density(t_db_mix, w_mix, p_atm)
flow_mix = m_dot_mix / rho_mix if rho_mix > 0 else 0
return {
't_db': t_db_mix,
'w': w_mix,
'rh': rh_mix,
'h': h_mix,
'flow_rate': flow_mix
}
# Example Usage (Preserved and expanded)
if __name__ == "__main__":
# Test basic properties
t_db_test = 25.0
rh_test = 50.0
p_atm_test = 101325.0
altitude_test = 1500 # meters
print(f"--- Properties at T={t_db_test}°C, RH={rh_test}%, P={p_atm_test} Pa ---")
props_sea_level = Psychrometrics.moist_air_properties(t_db_test, rh_test, p_atm_test)
for key, value in props_sea_level.items():
print(f"{key}: {value:.6f}")
print(f"\n--- Properties at T={t_db_test}°C, RH={rh_test}%, Altitude={altitude_test} m ---")
props_altitude = Psychrometrics.moist_air_properties(t_db_test, rh_test, altitude=altitude_test)
for key, value in props_altitude.items():
print(f"{key}: {value:.6f}")
p_calc_alt = Psychrometrics.pressure_at_altitude(altitude_test)
pressure_diff = abs(p_calc_alt - props_altitude["atmospheric_pressure_pa"]) < 1e-3
print(f"Calculated pressure at {altitude_test}m: {p_calc_alt:.0f} Pa (matches: {pressure_diff})")
# Test air mixing
print("\n--- Air Mixing Test ---")
stream_a = {'flow_rate': 1.0, 't_db': 30.0, 'rh': 60.0} # m³/s, °C, %
stream_b = {'flow_rate': 0.5, 't_db': 15.0, 'w': 0.005} # m³/s, °C, kg/kg
p_mix = 100000.0 # Pa
print(f"Stream A: {stream_a}")
print(f"Stream B: {stream_b}")
print(f"Mixing at Pressure: {p_mix} Pa")
try:
mixed_props = Psychrometrics.mix_air_streams(stream_a, stream_b, p_atm=p_mix)
print("\nMixed Stream Properties:")
for key, value in mixed_props.items():
print(f"{key}: {value:.6f}")
except ValueError as e:
print(f"\nError during mixing calculation: {e}")
# Test edge cases
print("\n--- Edge Case Tests ---")
try:
print(f"Dew point at 5°C, 100% RH: {Psychrometrics.dew_point_temperature(t_db=5.0, rh=100.0):.3f}°C")
print(f"Dew point at -10°C, 80% RH: {Psychrometrics.dew_point_temperature(t_db=-10.0, rh=80.0):.3f}°C")
print(f"Wet bulb at 30°C, 100% RH: {Psychrometrics.wet_bulb_temperature(t_db=30.0, rh=100.0):.3f}°C")
print(f"Wet bulb at -5°C, 50% RH: {Psychrometrics.wet_bulb_temperature(t_db=-5.0, rh=50.0):.3f}°C")
# Test high temp / high humidity
props_hot_humid = Psychrometrics.moist_air_properties(t_db=50, rh=90, p_atm=101325)
humidity_ratio = props_hot_humid["humidity_ratio_kg_kg"]
enthalpy = props_hot_humid["enthalpy_j_kg"]
print(f"Properties at 50°C, 90% RH: W={humidity_ratio:.6f}, H={enthalpy:.0f}")
except ValueError as e:
print(f"Error during edge case test: {e}")